For a given data \( (x_i, y_i) \), \( i = 1, 2, \dots, n \), with \( \sum_{i=1}^{n} x_i^2>0 \), let \( \hat{\beta} \) satisfy \[ \sum_{i=1}^{n} (y_i - \hat{\beta} x_i)^2 = \inf_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (y_i - \beta x_i)^2. \] {Further, let } \( v_j = y_j - x_j \) and \( u_j = 2x_j \), for \( j = 1, 2, \dots, n \), and let \( \hat{\gamma} \) satisfy} \[ \sum_{i=1}^{n} (v_i - \hat{\gamma} u_i)^2 = \inf_{\gamma \in \mathbb{R}} \sum_{i=1}^{n} (v_i - \gamma u_i)^2. \] {If } \( \hat{\beta} = 10 \), then the value of \( \hat{\gamma} \) is: