For a given data \( (x_i, y_i) \), \( i = 1, 2, \dots, n \), with \( \sum_{i=1}^{n} x_i^2>0 \), let \( \hat{\beta} \) satisfy \[ \sum_{i=1}^{n} (y_i - \hat{\beta} x_i)^2 = \inf_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (y_i - \beta x_i)^2. \] {Further, let } \( v_j = y_j - x_j \) and \( u_j = 2x_j \), for \( j = 1, 2, \dots, n \), and let \( \hat{\gamma} \) satisfy} \[ \sum_{i=1}^{n} (v_i - \hat{\gamma} u_i)^2 = \inf_{\gamma \in \mathbb{R}} \sum_{i=1}^{n} (v_i - \gamma u_i)^2. \] {If } \( \hat{\beta} = 10 \), then the value of \( \hat{\gamma} \) is:
Consider the simple linear regression model \[ y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, 2, \dots, 24, \] where \( \alpha \in \mathbb{R} \) and \( \beta \in \mathbb{R} \) are unknown parameters, the errors \( \epsilon_i \)'s are i.i.d. random variables having \( N(0, \sigma^2) \) distribution, where \( \sigma>0 \) is unknown. Suppose the following summary statistics are obtained from a data set of 24 observations \( (x_1, y_1), \dots, (x_{24}, y_{24}) \): \[ S_{xx} = \sum_{i=1}^{24} (x_i - \bar{x})^2 = 22.82, \quad S_{yy} = \sum_{i=1}^{24} (y_i - \bar{y})^2 = 43.62, \quad S_{xy} = \sum_{i=1}^{24} (x_i - \bar{x})(y_i - \bar{y}) = 15.48, \] where \( \bar{x} = \frac{1}{24} \sum_{i=1}^{24} x_i \) and \( \bar{y} = \frac{1}{24} \sum_{i=1}^{24} y_i \). Then, for testing \( H_0: \beta = 0 \) against \( H_1: \beta \neq 0 \), the value of the \( F \)-test statistic based on the least squares estimator of \( \beta \), whose distribution is \( F_{1,22} \), equals (rounded off to two decimal places):
Let \( (X, Y)^T \) follow a bivariate normal distribution with \[ E(X) = 2, \, E(Y) = 3, \, {Var}(X) = 16, \, {Var}(Y) = 25, \, {Cov}(X, Y) = 14. \] Then \[ 2\pi \left( \Pr(X>2, Y>3) - \frac{1}{4} \right) \] equals _________ (rounded off to two decimal places).
Let \( X_1, X_2 \) be a random sample from a population having probability density function
\[ f_{\theta}(x) = \begin{cases} e^{(x-\theta)} & \text{if } -\infty < x \leq \theta, \\ 0 & \text{otherwise}, \end{cases} \] where \( \theta \in \mathbb{R} \) is an unknown parameter. Consider testing \( H_0: \theta \geq 0 \) against \( H_1: \theta < 0 \) at level \( \alpha = 0.09 \). Let \( \beta(\theta) \) denote the power function of a uniformly most powerful test. Then \( \beta(\log_e 0.36) \) equals ________ (rounded off to two decimal places).
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).