Let \( X \) follow a 10-dimensional multivariate normal distribution with zero mean vector and identity covariance matrix. Define \( Y = \log_e \sqrt{X^T X} \) and let \( M_Y(t) \) denote the moment generating function of \( Y \) at \( t \), \( t>-10 \). Then \( M_Y(2) \) equals _________ (answer in integer).