The formula for Factor of Safety (FOS) under dry conditions is:
\[
{FOS} = \frac{cA + (W \cos \theta) \tan \phi}{W \sin \theta}
\]
where:
$c = 196 { kPa} = 196 \times 10^3 \, {N/m}^2$
$A = 50 \, {m}^2$
$W = 2000 \, {tons} = 2000 \times 1000 \, {kg} = 2 \times 10^6 \, {kg}$
$g = 9.81 \, {m/s}^2$
$\theta = 60^\circ$
$\phi = 30^\circ$
Step 1: Convert weight to Newtons:
\[
W = 2 \times 10^6 \times 9.81 = 1.962 \times 10^7 \, {N}
\]
Step 2: Compute resisting forces:
\[
cA = 196 \times 10^3 \times 50 = 9.8 \times 10^6 \, {N}
\]
\[
(W \cos \theta) \tan \phi = (1.962 \times 10^7 \times \cos 60^\circ) \times \tan 30^\circ
\]
\[
= (1.962 \times 10^7 \times 0.5) \times 0.577 \approx 9.81 \times 10^6 \times 0.577 = 5.665 \times 10^6 \, {N}
\]
\[
{Total resisting force} = 9.8 \times 10^6 + 5.665 \times 10^6 = 1.5465 \times 10^7 \, {N}
\]
Step 3: Compute driving force:
\[
W \sin \theta = 1.962 \times 10^7 \times \sin 60^\circ = 1.962 \times 10^7 \times 0.866 \approx 1.699 \times 10^7 \, {N}
\]
Step 4: Compute FOS:
\[
{FOS} = \frac{1.5465 \times 10^7}{1.699 \times 10^7} \approx 0.91
\]