>
questions
List of practice Questions
Which one of the following prismatic crystal forms belongs to the hexagonal crystal system?
IIT JAM GG - 2017
IIT JAM GG
Geology
Crystallography
Which one of the following minerals exhibits luminescence when exposed to ultraviolet light?
IIT JAM GG - 2017
IIT JAM GG
Geology
Mineralogy
In which one of the following mass extinction periods trilobites became extinct?
IIT JAM GG - 2017
IIT JAM GG
Geology
Paleontology
Let
\[ f(x, y) = \frac{xz y}{x^2 + y^2 + z^2}, \quad (x, y) \neq (0, 0). \]
Then
\[ \frac{\partial f}{\partial x} \text{ and } f \text{ are bounded and unbounded.} \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
Let \( 0<a_1<b_1 \), For \( n \geq 1 \), define
\[ a_{n+1} = \sqrt{a_n b_n} \quad \text{and} \quad b_{n+1} = \frac{a_n + b_n}{2}. \]
Then which one of the following is NOT TRUE?
IIT JAM MA - 2017
IIT JAM MA
Mathematics
sequences
The area of the surface
\[ z = \frac{xy}{3} \]
intercepted by the cylinder
\[ x^2 + y^2 \leq 16 \]
lies in the interval
\[ \left( 20\pi, 22\pi \right) \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
For \( a>0, b>0 \), let
\[ \mathbf{F} = \frac{xj - yk}{b x^2 + a y^2}. \]
Let
\[ C = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = a^2 + b^2\}. \]
Then the line integral
\[ \oint_C \mathbf{F} \cdot d\mathbf{r} = \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
If \( \lim_{t \to \infty} \int_0^t e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \), then
\[ \lim_{t \to \infty} \int_0^t x^2 e^{-x^2} dx = \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
The flux of the vector field
\[ \mathbf{F} = \left( \frac{2\pi x + 2x^2 y^2}{\pi} \right) \hat{i} + \left( \frac{2\pi x y - 4y}{\pi} \right) \hat{j} \]
along the outward normal, across the ellipse \( x^2 + 16y^2 = 4 \) is equal to
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
The number of generators of the additive group \( \mathbb{Z}_{36} \) is equal to
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
Find the limit:
\[ \lim_{n \to \infty} \sum_{k=1}^{n} \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot \frac{k}{n} \right) = \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Limit Theorems
Evaluate the integral:
\[ \int_0^1 \int_x^1 \sin(y^2) \, dy \, dx \]
IIT JAM MA - 2017
IIT JAM MA
Mathematics
Calculus
If for a suitable \( \alpha>0 \),
\[ \lim_{x \to 0} \left( \frac{1}{e^{2x} - 1} - \frac{1}{\alpha x} \right) \]
exists and is equal to
\( l \) (\( |l|<\infty \)),
then
\( \alpha = 2, l = -\frac{1}{2} \) is given by
IIT JAM MS - 2017
IIT JAM MS
Statistics
Limit Theorems
Let
\[ P = \int_0^1 \frac{dx}{\sqrt{8 - x^2 - x^3}}. \]
Which of the following statements is TRUE?
IIT JAM MS - 2017
IIT JAM MS
Statistics
Calculus
Let \( X \) be a random variable having a probability density function \( f \in \{ f_0, f_1 \} \), where
\[ f_0(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad f_1(x) = \begin{cases} \frac{1}{2}, & 0 \leq x \leq 2 \\ 0, & \text{otherwise} \end{cases} \] For testing the null hypothesis \( H_0 : f = f_0 \) against \( H_1 : f = f_1 \), based on a single observation on \( X \), the power of the most powerful test of size \( \alpha = 0.05 \) equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Hypothesis testing
If
\[ \int_0^1 \int_0^{\sqrt{1 - (y - 1)^2}} f(x, y) \, dx \, dy \]
equals
\[ \int_0^1 \int_0^x f(x, y) \, dy \, dx, \]
then
\( \alpha(x) \) and \( \beta(x) \) are
IIT JAM MS - 2017
IIT JAM MS
Statistics
Calculus
Let \( f: [0, 1] \to \mathbb{R} \) be a function defined as
\[ f(t) = \begin{cases} t^3 \left( 1 + \frac{1}{5} \cos(\log(e^t)) \right), & \text{if } t \in (0,1] \\ 0, & \text{if } t = 0 \end{cases} \] Let \( F: [0, 1] \to \mathbb{R} \) be defined as
\[ F(x) = \int_0^x f(t) \, dt \] Then \( F''(0) \) equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Calculus
Consider the function
\[ f(x, y) = x^3 - y^3 - 3x^2 + 3y^2 + 7, \, x, y \in \mathbb{R}. \]
Then the local minimum (\( m \)) and the local maximum (\( M \)) of \( f \) are given by
IIT JAM MS - 2017
IIT JAM MS
Statistics
Calculus
Let \( X \) and \( Y \) be continuous random variables with the joint probability density function
\[ f(x, y) = \begin{cases} x + y, & \text{if } 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases} \] Then \( P(X + Y > \frac{1}{2}) \) equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Let \( x_1 = 1.1, x_2 = 0.5, x_3 = 1.4, x_4 = 1.2 \) be the observed values of a random sample of size four from a distribution with the probability density function
\[ f(x|\theta) = \begin{cases} e^{-\theta x}, & \text{if } x \geq \theta \\ 0, & \text{otherwise}, \quad \theta \in (-\infty, \infty) \end{cases} \] Then the maximum likelihood estimate of \( \theta^2 \) is
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Let \( X \) be a discrete random variable with the probability mass function
\[ p(x) = k(1 + |x|)^2, \quad x = -2, -1, 0, 1, 2, \]
where \( k \) is a real constant. Then \( P(X = 0) \) equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Let \( \{X_n\}_{n \geq 1} \) be a sequence of i.i.d. random variables having common probability density function
\[ f(x) = \begin{cases} x e^{-x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases} \] Let \( \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \), \( n = 1, 2, \dots \). Then \[ \lim_{n \to \infty} P(\bar{X}_n = 2) \] equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Let \( X_1, X_2, X_3 \) be a random sample from a distribution with the probability density function
\[ f(x|\theta) = \frac{1}{\theta} e^{-x/\theta}, \quad x>0, \ \theta>0 \]
Which of the following estimators of \( \theta \) has the smallest variance for all \( \theta>0 \)?
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Player \( P_1 \) tosses 4 fair coins and player \( P_2 \) tosses a fair die independently of \( P_1 \). The probability that the number of heads observed is more than the number on the upper face of the die, equals
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Let \( X_1 \) and \( X_2 \) be i.i.d. continuous random variables with the probability density function
\[ f(x) = \begin{cases} 6x(1 - x), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases} \] Using Chebyshev's inequality, the lower bound of \( P \left( |X_1 + X_2 - 1| \leq \frac{1}{2} \right) \) is
IIT JAM MS - 2017
IIT JAM MS
Statistics
Probability
Prev
1
...
6143
6144
6145
6146
6147
...
8517
Next