If \(P(A)=\frac 35\) and \(P(B)=\frac 15\), find \(P(A∩B\)) if A and B are independent events.
Find the equation of the plane passing through the line of intersection of the planes \(\vec r.(\hat i+\hat j+\hat k)=1 \) and \(\vec r.(2\hat i+3\hat j-\hat k)+4=0\) and parallel to x-axis.
Find the area of the triangle with vertices \( A(1,1,2),B(2,3,5),and \space C(1,5,5).\)
A girl walks \(4km\) towards west,then she walk \(3km\) in a direction \(30°\)east of north and stops.Determine the girls displacement from her initial point to departure.
If O be the origin and the coordinates of P be (1, 2, -3),then find the equation of the plane passing through P and perpendicular to OP.
If a unit vector \(\vec{a}\) makes an angles \(\frac{\pi}{3}\) with \( \hat{i}\),\(\frac{\pi}{4}\) with \(\hat{j}\) and an acute angle \(θ\) with \(\hat{k}\) then find \(θ\) and hence,the compounds of \(\vec{a}\).
Find a unit vector perpendicular to each of the vector \(\vec{a}+\vec{b} \space and\space \vec{a}-\vec{b}\),where \(\vec{a}=3\hat{i}+2\vec{j}+2\vec{k}\space and \space \vec{b}=\hat{i}+2\hat{j}-2\hat{k}.\)
If \(\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k}\) and \(\vec{c}=\hat{i}-2\hat{j}+\hat{k}\),find a unit vector parallel to the vector \(2\vec{a}-\vec{b}+3\vec{c}.\)
Determine (E|F): Mother, Father and son line up at random for a family picture.E: Son on one endF: Father in middle
Determine P: A coin is tossed three times, where
Find a vector of magnitude 5units, and parallel to the resultant of the vectors \(\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\space and\space \vec{b}=\hat{i}-2\hat{j}+\hat{k}.\)
Find the shortest distance between the lines whose vector equations are
\(\overrightarrow r=(\hat i+2\hat j+3\hat k)+\lambda(\hat i-3\hat j+2\hat k)\)
and \(\overrightarrow r=(4\hat i+5\hat j+6\hat k)+\mu(2\hat i+3\hat j+\hat k)\)
Find the value of \(x\) for which\( x(\hat{i}+\hat{j}+\hat{k})\)is a unit vector.
One kind of cake requires 200g of flour and 25g of fat, and another kind of cake requires 100g of flour and 50g of fat. Find the maximum number of cakes that can be made from 5kg of flour and 1kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.
If\( \vec{a}=\vec{b}+\vec{c}\), then is it true that |\(\vec{a}\)|=|\(\vec{b}\)|+|\(\vec{c}\)| ? justify your answer.
\(Evaluate \ P(A∩B)\ if \ 2P(A) = P(B) =\) \(\frac {5}{13}\) \(and \ P(A|B)=\) \(\frac 25\)
Reshma wishes to mix two types of food P and Q in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B.Food P costs Rs.60/kg and food Q costs Rs.80/kg. Food P contains 3 units/kg of vitamin A and 5 units/kg of vitamin B while food Q contains 4units/kg of vitamin A and 2 units/kg of vitamin B. Determine the minimum cost of the mixture.
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find:
Find the scalar components and magnitude of the vector joining the points\( P(x_{1},y_{1},z_{1})and Q(x_{2},y_{2},z_{2}).\)