The equation of a circle in the first quadrant with centre(a,a) and radius (a)which touches the coordinate axes is:
(x-a)2+(y-a)2=a2...(1)
Differentiating equation(1)with respect to x,we get:
\(2(x-α)+2(y-α)\frac{dy}{dx}=0\)
⇒(x-α)+(y-α)y=0
⇒x-α+yy-αy=0
⇒x+yy-α(1+y)=0
\(⇒α=\frac{x+yy}{1+y}\)
Substituting the value of a in equation(1),we get:
\([x-(\frac{x+yy}{1+y})]^2+[y-(\frac{x+yy}{1+y})]^2=(\frac{x+yy}{1+y})^2\)
\(⇒[(\frac{x-y)y}{(1+y}]^2+[\frac{y-x}{1+y}]^2=[\frac{x+yy}{1+y'}]^2\)
\(⇒(x-y)^2.y^2+(x-y)^2=(x+yy)^2\)
\(⇒(x-y)^2[1+(y)^2]=(x+yy)^2\)
Hence,the required differential equation of the family of circles is
⇒(x-y)^2[1+(y)^2]=(x+yy)^2
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.