(i)Let \(A=\begin{bmatrix}3&5\\1&-1\end{bmatrix}\),then \(A'=\begin{bmatrix}3&1\\5&-1\end{bmatrix}\)
Now\(A+A'=A=\begin{bmatrix}3&5\\1&-1\end{bmatrix}+\begin{bmatrix}3&1\\5&-1\end{bmatrix}\)\(=\begin{bmatrix}6&6\\6&-2\end{bmatrix}\)
Let\(P=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix}6&6\\6&-2\end{bmatrix}\)
\(=\begin{bmatrix}3&3\\3&-1\end{bmatrix}\)
Now \(P'=\begin{bmatrix}3&3\\3&-1\end{bmatrix}=P\)
Thus\(,P=\frac{1}{2}(A+A')\)is a symmetric matrix.
Now \(A-A'=\begin{bmatrix}3&5\\1&-1\end{bmatrix}-\begin{bmatrix}3&1\\5&-1\end{bmatrix}\) \(=\begin{bmatrix}0&4\\-4&0\end{bmatrix}\)
Let \(Q=\frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix}0&4\\-4&0\end{bmatrix}\)
\(=\begin{bmatrix}0&2\\-2&0\end{bmatrix}\)
Now \(Q'=\begin{bmatrix}0&2\\-2&0\end{bmatrix}=-Q\)
Thus \(Q=\frac{1}{2}(A-A')\)is a skew-symmetric matrix.
Representing A as the sum of P and Q:
\(P+Q=\begin{bmatrix}3&3\\3&-1\end{bmatrix}+\begin{bmatrix}0&2\\-2&0\end{bmatrix}=\begin{bmatrix}3&5\\1&-1\end{bmatrix}=A\)
(ii)Let \(A=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}\)then \(A'=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}\)
Now \(A+A'=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}+\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}\)
\(=\begin{bmatrix}12&-4&4\\ -4&6&-2\\ 4&-2&6\end{bmatrix}\)
let \(P=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix}12&-4&4\\ -4&6&-2\\ 4&-2&6\end{bmatrix}\)
\(=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}\)
Now \(P'=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}=P\)
Thus \(P=\frac{1}{2}(A+A')\) is a symmetric matrix.
Now \(A-A'=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}-\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}\)
\(=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}\)
Let\(Q=\frac{1}{2}(A-A')=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}\)
Now \(Q'==\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}=Q\)
Thus\(Q=\frac{1}{2}(A-A')\) is a skew-symmetric matrix.
Representing A as the sum of P and Q:
\(P+Q=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}+\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}\)
\(=\begin{bmatrix}6&-2&2\\ -2&3&-1\\ 2&-1&3\end{bmatrix}=A\)
(iii)Let \(A=\begin{bmatrix}3&3&-1\\ -2&-2&1\\ -4&-5&2\end{bmatrix}\),then \(A'=\begin{bmatrix}3&-2&-4\\ 3&-2&-5\\ -1&1&2\end{bmatrix}\)
Now \(A+A'=\begin{bmatrix}3&3&-1\\ -2&-2&1\\ -4&-5&2\end{bmatrix}+\begin{bmatrix}3&-2&-4\\ 3&-2&-5\\ -1&1&2\end{bmatrix}\)
\(=\begin{bmatrix}6&1&-5\\ 1&-4&-4\\ -5&-4&4\end{bmatrix}\)
Let \(P=\frac{1}{2}(A+A')=\frac{1}{2}=\begin{bmatrix}6&1&-5\\ 1&-4&-4\\ -5&-4&4\end{bmatrix}\)
\(=\begin{bmatrix}3&\frac{1}{2}&\frac{-5}{2}\\ \frac{1}{2}& -2&-2\\ \frac{-5}{2}&-2&2\end{bmatrix}\)
Now \(P'==\begin{bmatrix}3&\frac{1}{2}&\frac{-5}{2}\\ \frac{1}{2}& -2&-2\\ \frac{-5}{2}&-2&2\end{bmatrix}\)
thus \(P=\frac{1}{2}( A+A')\) is a symmetric matrix.
Now \(A-A'=\begin{bmatrix}3&3&-1\\ -2&-2&1\\ -4&-5&2\end{bmatrix}-\begin{bmatrix}3&-2&-4\\ 3&-2&-5\\ -1&1&2\end{bmatrix}\)
\(=\begin{bmatrix}0&5&3\\ -5&0&6\\ -3&-6&0\end{bmatrix}\)
Let \(Q=\frac{1}{2}(A-A')=\frac{1}{2}=\begin{bmatrix}0&5&3\\ -5&0&6\\ -3&-6&0\end{bmatrix}\)
\(=\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\ \frac{-5}{2}&0&3\\ \frac{-3}{2}&-3&0\end{bmatrix}\)
Now \(Q'=\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\ \frac{-5}{2}&0&3\\ \frac{-3}{2}&-3&0\end{bmatrix}=-Q\)
Thus,\(Q=\frac{1}{2}( A-A')\)is a skew-symmetric matrix.
Representing A as the sum of P and Q:
\(P+Q=\begin{bmatrix}3&\frac{1}{2}&\frac{-5}{2}\\ \frac{1}{2}& -2&-2\\ \frac{-5}{2}&-2&2\end{bmatrix}+\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\ \frac{-5}{2}&0&3\\ \frac{-3}{2}&-3&0\end{bmatrix}\)
\(=\begin{bmatrix}3&3&-1\\ -2&-2&1\\ -4&-5&2\end{bmatrix}=A\)
(iv)Let \(A=\begin{bmatrix}1&5\\-1&2\end{bmatrix}\),Then \(A'=\begin{bmatrix}1&-1\\5&2\end{bmatrix}\)
Now \(A+A'=A=\begin{bmatrix}1&5\\-1&2\end{bmatrix}+\begin{bmatrix}1&-1\\5&2\end{bmatrix}\)
\(=\begin{bmatrix}2&4\\4&4\end{bmatrix}\)
Let \(P=\frac{1}{2}( A+A')=\begin{bmatrix}1&2\\2&2\end{bmatrix}\)
Now \(P'=\begin{bmatrix}1&2\\2&2\end{bmatrix}=P\)
Thus,\(P=\frac{1}{2}( A+A')\) is a symmetric matrix.
Now \(A-A'=\begin{bmatrix}1&5\\-1&2\end{bmatrix}-\begin{bmatrix}1&-1\\5&2\end{bmatrix}\)
\(=\begin{bmatrix}0&6\\-6&0\end{bmatrix}\)
Let \(Q=\frac{1}{2}( A-A')=\begin{bmatrix}0&3\\-3&0\end{bmatrix}\)
Now \(Q'=\begin{bmatrix}0&3\\-3&0\end{bmatrix}=-Q\)
Thus,\(Q=\frac{1}{2}( A-A')\) is a skew-symmetric matrix.
Representing A as the sum of P and Q:
\(P+Q=\begin{bmatrix}1&2\\2&2\end{bmatrix}+\begin{bmatrix}0&3\\-3&0\end{bmatrix}\)
\(=\begin{bmatrix}1&5\\-1&2\end{bmatrix}=A\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2 }. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.