>
CBSE CLASS XII
>
Mathematics
List of top Mathematics Questions asked in CBSE CLASS XII
The perimeter of a rectangular metallic sheet is
300
c
m
300 \, {cm}
300
c
m
. It is rolled along one of its sides to form a cylinder. Find the dimensions of the rectangular sheet so that the volume of the cylinder so formed is maximum.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
The chances of
P
P
P
,
Q
Q
Q
, and
R
R
R
getting selected as CEO of a company are in the ratio
4
:
1
:
2
4 : 1 : 2
4
:
1
:
2
, respectively. The probabilities for the company to increase its profits from the previous year under the new CEO,
P
,
Q
,
P, Q,
P
,
Q
,
or
R
R
R
, are
0.3
,
0.8
,
0.3, 0.8,
0.3
,
0.8
,
and
0.5
0.5
0.5
, respectively. If the company increased the profits from the previous year, find the probability that it is due to the appointment of
R
R
R
as CEO.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Probability
It is given that function
f
(
x
)
=
x
4
−
62
x
2
+
a
x
+
9
f(x) = x^4 - 62x^2 + ax + 9
f
(
x
)
=
x
4
−
62
x
2
+
a
x
+
9
attains a local maximum value at
x
=
1
x = 1
x
=
1
. Find the value of
a
a
a
, hence obtain all other points where the given function
f
(
x
)
f(x)
f
(
x
)
attains local maximum or local minimum values.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Evaluate:
∫
0
π
/
4
1
sin
x
+
cos
x
d
x
\int_{0}^{\pi/4} \frac{1}{\sin x + \cos x} \, dx
∫
0
π
/4
sin
x
+
cos
x
1
d
x
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Find:
∫
x
2
+
1
(
x
2
+
2
)
(
x
2
+
4
)
d
x
\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} \, dx
∫
(
x
2
+
2
)
(
x
2
+
4
)
x
2
+
1
d
x
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Find:
∫
2
+
sin
2
x
1
+
cos
2
x
e
x
d
x
\int \frac{2 + \sin 2x}{1 + \cos 2x} e^x \, dx
∫
1
+
cos
2
x
2
+
sin
2
x
e
x
d
x
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Solve the following linear programming problem graphically:
M
a
x
i
m
i
s
e
z
=
4
x
+
3
y
,
s
u
b
j
e
c
t
t
o
t
h
e
c
o
n
s
t
r
a
i
n
t
s
:
{Maximise } z = 4x + 3y, \quad {subject to the constraints:}
M
a
x
imi
se
z
=
4
x
+
3
y
,
s
u
bj
ec
tt
o
t
h
eco
n
s
t
r
ain
t
s
:
x
+
y
≤
800
,
2
x
+
y
≤
1000
,
x
≤
400
,
x
,
y
≥
0.
x + y \leq 800, \quad 2x + y \leq 1000, \quad x \leq 400, \quad x, y \geq 0.
x
+
y
≤
800
,
2
x
+
y
≤
1000
,
x
≤
400
,
x
,
y
≥
0.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programming Problem
Let
a
⃗
\vec{a}
a
and
b
⃗
\vec{b}
b
be two non-zero vectors. Prove that
∣
a
⃗
×
b
⃗
∣
≤
∣
a
⃗
∣
∣
b
⃗
∣
|\vec{a} \times \vec{b}| \leq |\vec{a}| |\vec{b}|
∣
a
×
b
∣
≤
∣
a
∣∣
b
∣
. State the condition under which equality holds, i.e.,
∣
a
⃗
×
b
⃗
∣
=
∣
a
⃗
∣
∣
b
⃗
∣
|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|
∣
a
×
b
∣
=
∣
a
∣∣
b
∣
.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
If
x
cos
(
p
+
y
)
+
cos
p
sin
(
p
+
y
)
=
0
x \cos(p + y) + \cos p \sin(p + y) = 0
x
cos
(
p
+
y
)
+
cos
p
sin
(
p
+
y
)
=
0
, prove that
cos
p
d
y
d
x
=
−
cos
2
(
p
+
y
)
\cos p \frac{dy}{dx} = -\cos^2(p + y)
cos
p
d
x
d
y
=
−
cos
2
(
p
+
y
)
, where
p
p
p
is a constant.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Find the position vector of point
C
C
C
which divides the line segment joining points
A
A
A
and
B
B
B
having position vectors
i
^
+
2
j
^
−
k
^
\hat{i} + 2\hat{j} - \hat{k}
i
^
+
2
j
^
−
k
^
and
−
i
^
+
j
^
+
k
^
-\hat{i} + \hat{j} + \hat{k}
−
i
^
+
j
^
+
k
^
, respectively, in the ratio 4:1 externally. Further, find
∣
A
B
→
∣
:
∣
B
C
→
∣
| \overrightarrow{AB} | : | \overrightarrow{BC} |
∣
A
B
∣
:
∣
BC
∣
.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
Evaluate:
∫
0
π
/
2
sin
2
x
cos
3
x
d
x
\int_{0}^{\pi/2} \sin 2x \cos 3x \, dx
∫
0
π
/2
sin
2
x
cos
3
x
d
x
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Evaluate:
sec
2
(
tan
−
1
1
2
)
+
csc
2
(
cot
−
1
1
3
)
\sec^2 \left( \tan^{-1} \frac{1}{2} \right) + \csc^2 \left( \cot^{-1} \frac{1}{3} \right)
sec
2
(
tan
−
1
2
1
)
+
csc
2
(
cot
−
1
3
1
)
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If a line makes an angle of
π
4
\frac{\pi}{4}
4
π
with the positive directions of both
x
x
x
-axis and
z
z
z
-axis, then the angle which it makes with the positive direction of
y
y
y
-axis is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If
∣
a
∣
=
2
|a| = 2
∣
a
∣
=
2
and
−
3
≤
k
≤
2
-3 \leq k \leq 2
−
3
≤
k
≤
2
, then
∣
a
∣
∣
k
∣
∈
:
|a| |k| \in:
∣
a
∣∣
k
∣
∈:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
The derivative of
2
x
2^x
2
x
w.r.t.
3
x
3^x
3
x
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Let
E
E
E
and
F
F
F
be two events such that
P
(
E
)
=
0.1
,
P
(
F
)
=
0.3
,
P
(
E
∪
F
)
=
0.4
P(E) = 0.1, P(F) = 0.3, P(E \cup F) = 0.4
P
(
E
)
=
0.1
,
P
(
F
)
=
0.3
,
P
(
E
∪
F
)
=
0.4
. Then
P
(
F
∣
E
)
P(F \,|\, E)
P
(
F
∣
E
)
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If
A
A
A
and
B
B
B
are two skew-symmetric matrices, then
A
B
+
B
A
AB + BA
A
B
+
B
A
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
If
a
⃗
=
2
i
^
−
j
^
+
k
^
\vec{a} = 2\hat{i} - \hat{j} + \hat{k}
a
=
2
i
^
−
j
^
+
k
^
and
b
⃗
=
i
^
−
2
j
^
+
k
^
\vec{b} = \hat{i} - 2\hat{j} + \hat{k}
b
=
i
^
−
2
j
^
+
k
^
, then
a
⃗
\vec{a}
a
and
b
⃗
\vec{b}
b
are:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If
α
,
β
\alpha, \beta
α
,
β
, and
γ
\gamma
γ
are the angles which a line makes with the positive directions of
x
,
y
,
z
x, y, z
x
,
y
,
z
axes respectively, then which of the following is not true?
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
The restrictions imposed on decision variables involved in an objective function of a linear programming problem are called:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programming Problem
If the sides of a square are decreasing at the rate of
1.5
c
m
/
s
1.5 \, \mathrm{cm/s}
1.5
cm/s
, the rate of decrease of its perimeter is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
x
log
x
d
y
d
x
+
y
=
2
log
x
x \log x \frac{dy}{dx} + y = 2 \log x
x
lo
g
x
d
x
d
y
+
y
=
2
lo
g
x
is an example of a:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
∫
−
a
a
f
(
x
)
d
x
=
0
\int_{-a}^a f(x) \, dx = 0
∫
−
a
a
f
(
x
)
d
x
=
0
, if:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
A function
f
(
x
)
=
∣
1
−
x
+
∣
x
∣
∣
f(x) = |1 - x + |x||
f
(
x
)
=
∣1
−
x
+
∣
x
∣∣
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Let
R
+
\mathbb{R}_+
R
+
denote the set of all non-negative real numbers. Then the function
f
:
R
+
→
R
+
f : \mathbb{R}_+ \to \mathbb{R}_+
f
:
R
+
→
R
+
defined as
f
(
x
)
=
x
2
+
1
f(x) = x^2 + 1
f
(
x
)
=
x
2
+
1
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Prev
1
...
11
12
13
14
15
...
67
Next