∫0π2\int_0^\frac \pi2∫02ππ20cos 2x dx\frac {\pi}{20} cos\ 2x\ dx20πcos 2x dx
y=∣ f(x)g(x) h(x) lm n ab c ∣y=\begin{vmatrix} f(x)&g(x) &h(x) \\ l&m &n \\ a&b &c \end{vmatrix}y= f(x) l ag(x) m b h(x)nc ,prove that dydx=∣ f′(x)g′(x) h′(x) lm n ab c ∣\frac{dy}{dx}=\begin{vmatrix} f'(x)&g'(x) &h'(x) \\ l&m &n \\ a&b &c \end{vmatrix}dxdy= f′(x) l ag′(x) m b h′(x)nc
Using mathematical induction prove that ddx\frac{d}{dx}dxd(xn)=nxn-1 for all positive integers n
If f(x)=|x|3, show that f"(x)exists for all real x, and find it.
For the curve y=4x3−2x5y = 4x^3 − 2x^5y=4x3−2x5 , find all the points at which the tangents passes through the origin.
If x=a(cost+tsint) and y=a(sint-tcost),find d2ydx2\frac{d^2y}{dx^2}dx2d2y
If cosy=xcos(a+y) with cosa≠±1,prove that dydx\frac{dy}{dx}dxdy=cos2(a+y)sin a\frac{cos^2(a+y)}{sin\,a}sinacos2(a+y)
Find the least value of a such that the function f given f(x)=x2+ax+1f(x)=x^2+ax+1f(x)=x2+ax+1 is strictly increasing on (1,2)(1, 2)(1,2).
If (x-a)2+(y-b)2=c2, for some c>0 prove that[1+(dydx\frac{dy}{dx}dxdy)2]32^{\frac{3}{2}}23/d2ydx2\frac{d^2y}{dx^2}dx2d2y is a constant independent of a and b
Prove that the function f given by f(x)=x2−x+1f(x) = x^2 − x + 1f(x)=x2−x+1 is neither strictly increasing nor strictly decreasing,on (−1,1)(−1, 1)(−1,1).
x1+y+y1+x=0x\sqrt{1+y}+y\sqrt{1+x}=0x1+y+y1+x=0, for -1<x<1,prove that dydx\frac{dy}{dx}dxdy=−-−1(1+x)2\frac{1}{(1+x)^2}(1+x)21
Prove that the logarithmic function is strictly increasing on (0,∞)(0, ∞)(0,∞).
Prove that y=4sinθ(2+cosθ)−θ y=\frac{ 4sinθ}{(2+cosθ)}-θ y=(2+cosθ)4sinθ−θ is an increasing function of θθθ in [0,π2][0,\frac π2][0,2π].
Find dydx\frac{dy}{dx}dxdy, if y=sin-1x+sin-11−x2\sqrt{1-x^2}1−x2, -1≤x≤1
Find the values of x for which y=[x(x−2)]2y=[x(x-2)]^2y=[x(x−2)]2 is an increasing function.
Find the general solution: dydx+2y=sin x\frac {dy}{dx}+2y=sin\ xdxdy+2y=sin x
Show that y=log(1+x)−2x2+x, x>−1y = log(1+x) - \frac {2x}{2+x}, \ x>-1y=log(1+x)−2+x2x, x>−1,is an increasing function of x throughout its domain.
The general solution of the differential equation exdy+(yex+2x)dx=0e^{x}dy+(ye^{x}+2x)dx=0exdy+(yex+2x)dx=0 is
The general solution of a differential equation of the type dxdy+p1x=Q1\frac{dx}{dy}+p_{1}x=Q1dydx+p1x=Q1 is
Choose the correct answer.If x,y,z are nonzero real numbers,then the inverse of matrixA=[x000y000z]\begin{bmatrix}x& 0& 0\\ 0& y& 0\\0&0& z\end{bmatrix}x000y000zis