A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
(a) What is the final pressure of the gas in A and B ?
(b) What is the change in internal energy of the gas ?
(c) What is the change in the temperature of the gas ?
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following 1) What is the final pressure of the gas in A and B? 2) What is the change in internal energy of the gas? 3) What is the change in the temperature of the gas?
A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig. (11.13).
Its volume is then reduced to the original value from E to F by an isobaric process. Calculate the total work done by the gas from D to E to F
Figure 12.8 shows plot of \(\frac{PV}{T}\) versus P for 1.00×10–3 kg of oxygen gas at two different temperatures.
(a) What does the dotted plot signify?
(b) Which is true: T1>T2 or T1<T2 ?
(c) What is the value of \(\frac{PV}{T}\) where the curves meet on the y-axis?
(d) If we obtained similar plots for \(1.00×10^–3\) kg of hydrogen, would we get the same value of \(\frac{PV}{T}\) at the point where the curves meet on the y-axis? If not, what mass of hydrogen yields the same value of \(\frac{PV}{T}\) (for low pressure high temperature region of the plot) ? (Molecular mass of H2 = 2.02 u, of O2 = 32.0 u, R = 8.31 J mo1–1 K–1.)
State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful:
(a) adding any two scalars,
(b) adding a scalar to a vector of the same dimensions,
(c) multiplying any vector by any scalar,
(d) multiplying any two scalars,
(e) adding any two vectors,
(f) adding a component of a vector to the same vector