Question:

The bob A of a pendulum released from 30o to the vertical hits another bob B of the same mass at rest on a table as shown in Fig. 5.15. How high does the bob A rise after the collision ? Neglect the size of the bobs and assume the collision to be elastic.

The bob A of a pendulum released from 30o to the vertical

Updated On: Nov 6, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Bob A will not rise at all 
In an elastic collision between two equal masses in which one is stationary, while the other is moving with some velocity, the stationary mass acquires the same velocity, while the moving mass immediately comes to rest after collision. In this case, a complete transfer of momentum takes place from the moving mass to the stationary mass.

Hence, bob A of mass m, after colliding with bob B of equal mass, will come to rest, while bob B will move with the velocity of bob A at the instant of collision.

Was this answer helpful?
0
0

Concepts Used:

Work, Energy and Power

Work:

  • Work is correlated to force and the displacement over which it acts. When an object is replaced parallel to the force's line of action, it is thought to be doing work. It is a force-driven action that includes movement in the force's direction.
  • The work done by the force is described to be the product of the elements of the force in the direction of the displacement and the magnitude of this displacement.

Energy:

  • A body's energy is its potential to do tasks. Anything that has the capability to work is said to have energy. The unit of energy is the same as the unit of work, i.e., the Joule.
  • There are two types of mechanical energy such as; Kinetic and potential energy.

Read More: Work and Energy

Power:

  • Power is the rate at which energy is transferred, conveyed, or converted or the rate of doing work. Technologically, it is the amount of work done per unit of time. The SI unit of power is Watt (W) which is joules per second (J/s). Sometimes the power of motor vehicles and other machines is demonstrated in terms of Horsepower (hp), which is roughly equal to 745.7 watts.
  • Power is a scalar quantity, which gives us a quantity or amount of energy consumed per unit of time but with no manifestation of direction.