>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
The substitution \( x = vy \) converts which one of the following differential equations to an equation solvable by the variable separable method?
AP EAPCET - 2023
AP EAPCET
Mathematics
Differential Equations
The area (in square units) bounded by the curves \( x^2 = 9y \), \( (x - 6)^2 = 9y \), and the X-axis is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Area between Two Curves
Evaluate the integral:
\[ \int \frac{e^x \left( 2 + \sin(2x) \right)}{1 + \cos(2x)} \, dx \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If \( I = \int_{-a}^{a} \left( x^4 - 2x^2 \right) \, dx \), then \( I \) is minimum at \( a = \):
AP EAPCET - 2023
AP EAPCET
Mathematics
Differential Equations
If \( f(x) = \int \frac{dx}{x^2 + 2} \) and \( f(\sqrt{2}) = 0 \), then \( f(0) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If \( [x] \) is the greatest integer not exceeding \( x \), then
\[ \int_{-0.5}^{1.5} x^2 [x] \, dx = \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
Evaluate the integral:
\[ \int_0^{50\pi} \sqrt{1 - \cos 2x} \, dx \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If
\[ \int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} \, dx = Ax + B \log \left( 9e^{2x} - 4 \right) + C, \text{ then } (A, B) = \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If \( f(x) \) is a differentiable function, \( f'(x) \geq 5 \) for \( x \in [2,6] \), \( f(2) = 4 \) and \( f(3) = 15 \), then a possible value of \( f(6) \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Mean Value Theorem
Let \( f(x) \) be a differentiable function, \( A(0, \alpha) \) and \( B(8, \beta) \) be two points on the curve \( y = f(x) \). Given \( f(0) = 2 \) and \( f'(4) = -\frac{3}{4} \). If the chord \( AB \) of the curve is parallel to the tangent drawn at the point \( (4, f(4)) \), then \( \beta \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Differentiation
If the tangent drawn to the curve \( y = x^3 - ax^2 + x + 1 \) at each point \( x \in \mathbb{R} \), is inclined at an acute angle with the positive direction of \( X \)-axis, then the set of all possible values of \( a \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Differentiation
If \( y = \log x \), then the value of \( x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y \) at the point \( \left( \sqrt{e}, \sqrt{e} \right) \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Differentiation
If \( f(x) = \sqrt{x} + \sin x \), then all the points of the set \( \left( x, f(x) \right)/f'(x) = 0 \) lie on:
AP EAPCET - 2023
AP EAPCET
Mathematics
Functions
Let the equation of the tangent at a point \( P \) on the parabola \( x^2 - 4x - 4y + 16 = 0 \) be \( 2x - y - 5 = 0 \). If the equation of the normal drawn at \( P \) to this parabola is \( ax + y + c = 0 \), then find \( ac \):
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
Let \( f(x) \) be a real valued function. If \( f'(x) \) is a constant for all \( x \in \mathbb{R}, f(0) = 1 \) and \( f'(0) = 2 \), then
AP EAPCET - 2023
AP EAPCET
Mathematics
Continuity
If \( f : \mathbb{R} \to \mathbb{R} \) is defined by:
\[ f(x) = \begin{cases} \sin x - \sin \left( \frac{x}{2} \right), & x<0 \\ \frac{x}{\sqrt{x^2 + \sqrt{x^2}}}, & x>0 \end{cases} \]
If \( f \) is continuous on \( \mathbb{R} \), then \( f(0) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Continuity
If \( \theta \) is the acute angle between the tangents drawn from the point \( (2, 3) \) to the hyperbola \( 5x^2 - 6y^2 - 30 = 0 \), then \( \tan \theta \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Conic sections
The difference between the focal distances of any point on the hyperbola
\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } 6. \text{ If } (\sqrt{13}, k) \text{ is an end point of a latus rectum of this hyperbola, then } k = \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Hyperbola
Let the circle \( S: x^2 + y^2 + 2gx + 2fy + c = 0 \) cut the circles \( x^2 + y^2 - 2x + 2y - 2 = 0 \) and \( x^2 + y^2 + 4x - 6y + 9 = 0 \) orthogonally. If the centre of the circle \( S = 0 \) lies on the line \( 2x + 3y - 2 = 0 \), then \( 2g + f = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry
Let \( S \) be the circumcircle of the triangle formed by the line \( x - 2y - 4 = 0 \) with the coordinate axes. If \( P(-2, -4) \) is a point in the plane of the circle \( S \) and \( Q \) is a point on \( S \) such that the distance between \( P \) and \( Q \) is the least, then \( PQ = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry
The equation of the pair of tangents drawn from the point \( (1, 1) \) to the circle \( x^2 + y^2 + 2x + 2y + 1 = 0 \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
If the line passing through the points \( (5,1,a) \) and \( (3,b,1) \) crosses the YZ plane at the point \( \left( 0, \frac{17}{2}, \frac{-13}{2} \right) \), then \( a + b = \):
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
If the chord of contact of the point \( P(h, k) \) with respect to the circle \( x^2 + y^2 - 4x - 4y + 8 = 0 \) meets the circle in two distinct points and it also makes an angle \( 45^\circ \) with the positive X-axis in the positive direction, then \( (h, k) \) cannot be:
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry
The distance between two parallel planes \( ax + by + cz + d_1 = 0 \) and \( ax + by + cz + d_2 = 0 \) is given by \( \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} \). If the plane \( 2x - y + 2z + 3 = 0 \) has the distances \( \frac{1}{3} \) units from the planes \( 4x - 2y + 4z + \lambda = 0 \) and \( 2x - y + 2z + \mu = 0 \) respectively, then the maximum value of \( \lambda + \mu \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
If the coordinates of the point of contact of the circles \( x^2 + y^2 - 4x + 8y + 4 = 0 \) and \( x^2 + y^2 + 2x = 0 \) is \( (a, b) \), then \( a + 2b \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
Prev
1
...
11
12
13
14
15
...
41
Next