If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]
Assertion (A): If \( B \) is a \( 3 \times 3 \) matrix and \( |B| = 6 \), then \( | {Adj}(B) | = 36 \). Reason (R): If \( B \) is a square matrix of order \( n \), then \( |{Adj}(B)| = |B|^n \).
If
and \( AA^T = I \), then \( \frac{a}{b} + \frac{b}{a} = \):