>
WBJEE
List of top Questions asked in WBJEE
Two smallest squares are chosen one by one on a chessboard. The probability that they have a side in common is:
WBJEE - 2024
WBJEE
Mathematics
Probability
The expression
cos
2
θ
+
cos
2
(
θ
+
ϕ
)
−
2
cos
θ
cos
(
θ
+
ϕ
)
\cos^2 \theta + \cos^2 (\theta + \phi) - 2 \cos \theta \cos (\theta + \phi)
cos
2
θ
+
cos
2
(
θ
+
ϕ
)
−
2
cos
θ
cos
(
θ
+
ϕ
)
is:
WBJEE - 2024
WBJEE
Mathematics
Trigonometry
Two integers
r
r
r
and
s
s
s
are drawn one at a time without replacement from the set
{
1
,
2
,
…
,
n
}
\{1, 2, \ldots, n\}
{
1
,
2
,
…
,
n
}
. Then
P
(
r
≤
k
/
s
≤
k
)
P(r \leq k / s \leq k)
P
(
r
≤
k
/
s
≤
k
)
is:
WBJEE - 2024
WBJEE
Mathematics
Probability
In
R
\mathbb{R}
R
, a relation
p
p
p
is defined as follows: For
a
,
b
∈
R
a, b \in \mathbb{R}
a
,
b
∈
R
,
a
p
b
apb
a
p
b
holds if
a
2
−
4
a
b
+
3
b
2
=
0
a^2 - 4ab + 3b^2 = 0
a
2
−
4
ab
+
3
b
2
=
0
.
Then:
WBJEE - 2024
WBJEE
Mathematics
Relations and Functions
Let
f
:
R
→
R
f : \mathbb{R} \to \mathbb{R}
f
:
R
→
R
be a function defined by
f
(
x
)
=
e
∣
x
∣
−
e
−
x
e
x
+
e
−
x
f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}
f
(
x
)
=
e
x
+
e
−
x
e
∣
x
∣
−
e
−
x
, then:
WBJEE - 2024
WBJEE
Mathematics
Relations and Functions
Let A be the set of even natural numbers that are<8 and B be the set of prime integers that are<7. The number of relations from A to B is:
WBJEE - 2024
WBJEE
Mathematics
Relations and Functions
If
(
2
1
3
2
)
⋅
A
⋅
(
−
3
2
5
−
3
)
=
(
1
0
0
1
)
,
\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \cdot A \cdot \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
(
2
3
1
2
)
⋅
A
⋅
(
−
3
5
2
−
3
)
=
(
1
0
0
1
)
,
then
A
A
A
is:
WBJEE - 2024
WBJEE
Mathematics
Matrices and Determinants
Let
f
(
x
)
=
∣
cos
x
x
1
2
sin
x
x
3
2
x
tan
x
x
1
∣
,
f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2 \sin x & x^3 & 2x \\ \tan x & x & 1 \end{vmatrix},
f
(
x
)
=
cos
x
2
sin
x
tan
x
x
x
3
x
1
2
x
1
,
then
lim
x
→
0
f
(
x
)
x
2
=
?
\lim_{x \to 0} \frac{f(x)}{x^2} = ?
x
→
0
lim
x
2
f
(
x
)
=
?
WBJEE - 2024
WBJEE
Mathematics
Limits
If
∣
x
k
x
k
+
2
x
k
+
3
y
k
y
k
+
2
y
k
+
3
z
k
z
k
+
2
z
k
+
3
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
1
x
+
1
y
+
1
z
)
,
\begin{vmatrix} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{vmatrix} = (x - y)(y - z)(z - x)\left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right),
x
k
y
k
z
k
x
k
+
2
y
k
+
2
z
k
+
2
x
k
+
3
y
k
+
3
z
k
+
3
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
1
+
y
1
+
z
1
)
,
then the value of
k
k
k
is:
WBJEE - 2024
WBJEE
Mathematics
Matrices and Determinants
If
A
=
(
cos
θ
−
sin
θ
sin
θ
cos
θ
)
A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}
A
=
(
cos
θ
sin
θ
−
sin
θ
cos
θ
)
and
θ
=
2
π
7
\theta = \frac{2\pi}{7}
θ
=
7
2
π
, then
A
100
=
A
×
A
×
…
A^{100} = A \times A \times \ldots
A
100
=
A
×
A
×
…
(100 times) is equal to:
WBJEE - 2024
WBJEE
Mathematics
Matrices and Determinants
The coefficient of
a
10
b
7
c
3
a^{10}b^7c^3
a
10
b
7
c
3
in the expansion of
(
b
c
+
c
a
+
a
b
)
10
(bc + ca + ab)^{10}
(
b
c
+
c
a
+
ab
)
10
is:
WBJEE - 2024
WBJEE
Mathematics
Binomial theorem
If
(
1
+
x
+
x
2
+
x
3
)
5
=
∑
k
=
0
15
a
k
x
k
(1 + x + x^2 + x^3)^5 = \sum_{k=0}^{15} a_k x^k
(
1
+
x
+
x
2
+
x
3
)
5
=
∑
k
=
0
15
a
k
x
k
, then
∑
k
=
0
7
(
−
1
)
k
⋅
a
2
k
\sum_{k=0}^{7} (-1)^k \cdot a_{2k}
∑
k
=
0
7
(
−
1
)
k
⋅
a
2
k
is equal to:
WBJEE - 2024
WBJEE
Mathematics
Binomial theorem
If
P
(
x
)
=
a
x
2
+
b
x
+
c
P(x) = ax^2 + bx + c
P
(
x
)
=
a
x
2
+
b
x
+
c
and
Q
(
x
)
=
−
a
x
2
+
d
x
+
c
Q(x) = -ax^2 + dx + c
Q
(
x
)
=
−
a
x
2
+
d
x
+
c
where
a
c
≠
0
ac \neq 0
a
c
=
0
, then
P
(
x
)
⋅
Q
(
x
)
=
0
P(x) \cdot Q(x) = 0
P
(
x
)
⋅
Q
(
x
)
=
0
has:
WBJEE - 2024
WBJEE
Mathematics
Quadratic Equation
Let N be the number of quadratic equations with coefficients from {0,1,2,...,9} such that 0 is a solution of each equation. Then the value of N is:
WBJEE - 2024
WBJEE
Mathematics
Quadratic Equation
If
z
1
z_1
z
1
and
z
2
z_2
z
2
be two roots of the equation
z
2
+
a
z
+
b
=
0
,
a
2
<
4
b
z^2 + az + b = 0, \, a^2 < 4b
z
2
+
a
z
+
b
=
0
,
a
2
<
4
b
, then the origin,
z
1
z_1
z
1
and
z
2
z_2
z
2
form an equilateral triangle if:
WBJEE - 2024
WBJEE
Mathematics
complex numbers
If
cos
θ
+
i
sin
θ
,
θ
∈
R
\cos\theta + i \sin\theta, \, \theta \in \mathbb{R}
cos
θ
+
i
sin
θ
,
θ
∈
R
, is a root of the equation
a
0
x
n
+
a
1
x
n
−
1
+
⋯
+
a
n
−
1
x
+
a
n
=
0
,
a
0
,
a
1
,
…
,
a
n
∈
R
,
a
0
≠
0
a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1}x + a_n = 0, \, a_0, a_1, \ldots, a_n \in \mathbb{R}, \, a_0 \neq 0
a
0
x
n
+
a
1
x
n
−
1
+
⋯
+
a
n
−
1
x
+
a
n
=
0
,
a
0
,
a
1
,
…
,
a
n
∈
R
,
a
0
=
0
then the value of
a
1
sin
θ
+
a
2
sin
2
θ
+
⋯
+
a
n
sin
n
θ
a_1 \sin\theta + a_2 \sin 2\theta + \cdots + a_n \sin n\theta
a
1
sin
θ
+
a
2
sin
2
θ
+
⋯
+
a
n
sin
n
θ
is:
WBJEE - 2024
WBJEE
Mathematics
complex numbers
If
(
x
2
log
x
)
log
9
x
=
x
+
4
(x^2 \log x) \log_9 x = x + 4
(
x
2
lo
g
x
)
lo
g
9
x
=
x
+
4
, then the value of
x
x
x
is:
WBJEE - 2024
WBJEE
Mathematics
Quadratic Equation
If
a
,
b
,
c
a, b, c
a
,
b
,
c
are distinct odd natural numbers, then the number of rational roots of the equation
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
a
x
2
+
b
x
+
c
=
0
is:
WBJEE - 2024
WBJEE
Mathematics
Quadratic Equation
The numbers
1
,
2
,
3
,
…
,
m
1, 2, 3, \ldots, m
1
,
2
,
3
,
…
,
m
are arranged in random order. The number of ways this can be done, so that the numbers
1
,
2
,
…
,
r
(
r
<
m
)
1, 2, \ldots, r \, (r < m)
1
,
2
,
…
,
r
(
r
<
m
)
appear as neighbours is:
WBJEE - 2024
WBJEE
Mathematics
Probability
Given an A.P. and a G.P. with positive terms, with the first and second terms of the progressions being equal. If
a
n
a_n
a
n
and
b
n
b_n
b
n
be the
n
n
n
-th term of A.P. and G.P. respectively, then:
WBJEE - 2024
WBJEE
Mathematics
Sequence and series
A unit vector in XY-plane making an angle
4
5
∘
45^\circ
4
5
∘
with
i
^
+
j
^
\hat{i} + \hat{j}
i
^
+
j
^
and an angle
6
0
∘
60^\circ
6
0
∘
with
3
i
^
−
4
j
^
3\hat{i} - 4\hat{j}
3
i
^
−
4
j
^
is:
WBJEE - 2024
WBJEE
Mathematics
Vectors
Let
y
=
f
(
x
)
y = f(x)
y
=
f
(
x
)
be any curve on the X-Y plane and
P
P
P
be a point on the curve. Let
C
C
C
be a fixed point not on the curve. The length
P
C
PC
PC
is either a maximum or a minimum. Then:
WBJEE - 2024
WBJEE
Mathematics
Limits
If a particle moves in a straight line according to the law
x
=
a
sin
(
t
+
b
)
x = a \sin(\sqrt{t} + b)
x
=
a
sin
(
t
+
b
)
, then the particle will come to rest at two points whose distance is:
WBJEE - 2024
WBJEE
Mathematics
Differential Equations
If for the series
a
1
,
a
2
,
a
3
,
…
a_1, a_2, a_3, \ldots
a
1
,
a
2
,
a
3
,
…
, etc.,
a
n
+
1
−
a
n
a_{n+1} - a_n
a
n
+
1
−
a
n
bears a constant ratio with
a
n
+
a
n
+
1
a_n + a_{n+1}
a
n
+
a
n
+
1
, then
a
1
,
a
2
,
a
3
,
…
a_1, a_2, a_3, \ldots
a
1
,
a
2
,
a
3
,
…
are in:
WBJEE - 2024
WBJEE
Mathematics
Sequence and series
Let
f
:
R
→
R
f : \mathbb{R} \to \mathbb{R}
f
:
R
→
R
be given by
f
(
x
)
=
∣
x
2
−
1
∣
f(x) = |x^2 - 1|
f
(
x
)
=
∣
x
2
−
1∣
, then:
WBJEE - 2024
WBJEE
Mathematics
Limits
Prev
1
...
3
4
5
6
7
...
56
Next