Step 1: Understand the function \( f(x) = |1 - 2x| \).
The absolute value function \( |u| \) is defined as:
\[
|u| = \begin{cases} u, & \text{if } u \ge 0
-u, & \text{if } u<0 \end{cases}
\]
Applying this to \( f(x) = |1 - 2x| \):
\[
f(x) = \begin{cases} 1 - 2x, & \text{if } 1 - 2x \ge 0 \implies x \le \frac{1}{2}
-(1 - 2x) = 2x - 1, & \text{if } 1 - 2x<0 \implies x>\frac{1}{2} \end{cases}
\]
Step 2: Check for continuity at \( x = \frac{1}{2} \).
For a function to be continuous at \( x = a \), we need \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) \).
At \( x = \frac{1}{2} \), \( f\left(\frac{1}{2}\right) = \left|1 - 2\left(\frac{1}{2}\right)\right| = |1 - 1| = 0 \).
Left-hand limit:
\[
\lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^-} (1 - 2x) = 1 - 2\left(\frac{1}{2}\right) = 1 - 1 = 0
\]
Right-hand limit:
\[
\lim_{x \to \frac{1}{2}^+} f(x) = \lim_{x \to \frac{1}{2}^+} (2x - 1) = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0
\]
Since \( \lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^+} f(x) = f\left(\frac{1}{2}\right) = 0 \), the function \( f(x) \) is continuous at \( x = \frac{1}{2} \).
Step 3: Check for differentiability at \( x = \frac{1}{2} \).
For a function to be differentiable at \( x = a \), the left-hand derivative must be equal to the right-hand derivative at that point.
We need to find \( f'(x) \) for \( x<\frac{1}{2} \) and \( x>\frac{1}{2} \).
For \( x<\frac{1}{2} \), \( f(x) = 1 - 2x \), so \( f'(x) = -2 \).
For \( x>\frac{1}{2} \), \( f(x) = 2x - 1 \), so \( f'(x) = 2 \).
Left-hand derivative at \( x = \frac{1}{2} \):
\[
f'\left(\frac{1}{2}^-\right) = \lim_{h \to 0^-} \frac{f\left(\frac{1}{2} + h\right) - f\left(\frac{1}{2}\right)}{h} = \lim_{h \to 0^-} \frac{(1 - 2(\frac{1}{2} + h)) - 0}{h} = \lim_{h \to 0^-} \frac{1 - 1 - 2h}{h} = \lim_{h \to 0^-} \frac{-2h}{h} = -2
\]
Right-hand derivative at \( x = \frac{1}{2} \):
\[
f'\left(\frac{1}{2}^+\right) = \lim_{h \to 0^+} \frac{f\left(\frac{1}{2} + h\right) - f\left(\frac{1}{2}\right)}{h} = \lim_{h \to 0^+} \frac{(2(\frac{1}{2} + h) - 1) - 0}{h} = \lim_{h \to 0^+} \frac{1 + 2h - 1}{h} = \lim_{h \to 0^+} \frac{2h}{h} = 2
\]
Since \( f'\left(\frac{1}{2}^-\right) = -2 \) and \( f'\left(\frac{1}{2}^+\right) = 2 \), the left-hand derivative is not equal to the right-hand derivative at \( x = \frac{1}{2} \). Therefore, \( f(x) \) is not differentiable at \( x = \frac{1}{2} \).