The equation of the plane which bisects the angle between the planes \[ 3x - 6y + 2z + 5 = 0 \quad \text{and} \quad 4x - 12y + 32z - 3 = 0 \] \(\text{which contains the origin is:}\)
If \[ \left( \frac{a}{b} \right)^2 + \left( \frac{b}{a} \right)^2 = 676, \quad \left| \mathbf{b} \right| = 2, \quad \text{then} \left| \mathbf{a} \right| \(\text{ is equal to:}\)
If \[ \int \frac{\sin x}{\sin(x - \alpha)} dx = Ax + B \log \sin(x - \alpha) + C, \] \(\text{then the value of}\) \( (A, B) \) is: