Equation of the normal at point $(at_1^2 ,\, 2at_1)$ on parabola is
$y = -t_{1}x + 2at_{1} + at_{1}^{3}$
It also passes through $\left(at_{1}^{2} ,\, 2at_{2}\right)$
So, $2at_{2} = -t_{1}\left(at^{2}_{2}\right)+2at_{1}+at^{3}_{1}$
$\Rightarrow 2t_{2}-2t_{1} = -t_{1}\left(t^{2}_{2}-t^{2}_{1}\right)$
$\Rightarrow t_{1}+t_{2} = \frac{-2}{t_{1}}$
$\Rightarrow t_{2} = -t_{1} -\frac{2}{t_{1}}$