>
VITEEE
List of top Questions asked in VITEEE
The radius of the base of a cone is increasing at the rate of 3 cm/minute and the altitude is decreasing at the rate of 4 cm/minute. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is:
VITEEE - 2024
VITEEE
Mathematics
Sequences and Series
Let \( z \neq 1 \) be a complex number and let \( \omega = x + iy, y \neq 0 \). If
\[ \frac{\omega -\overline{\omega}z}{1 -z} \]
is purely real, then \( |z| \) is equal to
VITEEE - 2024
VITEEE
Mathematics
Complex numbers
Let the vectors \( \overrightarrow{AB} = 2\hat{i} + 2\hat{j} + \hat{k} \) and \( \overrightarrow{AC} = 2\hat{i} + 4\hat{j} + 4\hat{k} \) be two sides of a triangle ABC. If \( G \) is the centroid of \( \triangle ABC \), then \( \frac{22}{7} |\overrightarrow{AG}|^2 + 5 = \):
(a) 25
VITEEE - 2024
VITEEE
Mathematics
Vectors
If \( f(x) = \ln \left( \frac{x^2 + e}{x^2 + 1} \right) \), then the range of \( f(x) \) is:
VITEEE - 2024
VITEEE
Mathematics
Limit and Continuity
The derivative of
\(\sin^2\)
\(( \cot^{-1} {\sqrt {( \frac{1 + x}{1 - x}} })\)
with respect to \( x \) is equal to:
(a) 0
VITEEE - 2024
VITEEE
Mathematics
Determinants
If \( f(x) = \cos^{-1 } \left( \frac{\sqrt{2x^2 + 1}}{x^2 + 1} \right) \), then the range of \( f(x) \) is:
VITEEE - 2024
VITEEE
Mathematics
Trigonometry
The IUPAC name for
VITEEE - 2024
VITEEE
Chemistry
Organic Chemistry
If the roots of the quadratic equation
$$ (a^2 + b^2) \, x^2 - 2 \, (bc + ad) \, x + (c^2 + d^2) = 0 $$
are equal, then:
VITEEE - 2024
VITEEE
Mathematics
Quadratic Equations
Let \( n(A) = m \) and \( n(B) = n \), if the number of subsets of \( A \) is 56 more than that of subsets of \( B \), then \( m + n \) is equal to:
VITEEE - 2024
VITEEE
Mathematics
Algebra
Let \( f(x) \) be a polynomial function satisfying
\[ f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right). \]
If \( f(4) = 65 \) and \( I_1, I_2, I_3 \) are in GP, then \( f'(I_1), f'(I_2), f'(I_3) \) are in:
VITEEE - 2024
VITEEE
Mathematics
Polynomials
Let \( f(x) \) be defined as:
\[f(x) = \begin{cases} 3 - x, & x<-3 \\ 6, & -3 \leq x \leq 3 \\ 3 + x, & x>3 \end{cases}\]
Let \( \alpha \) be the number of points of discontinuity of \( f(x) \) and \( \beta \) be the number of points where \( f(x) \) is not differentiable. Then, \( \alpha + \beta \) is:
VITEEE - 2024
VITEEE
Mathematics
Matrices
Evaluate the integral: $\int_{-\pi}^{\pi} x^2 \sin(x) \, dx$
VITEEE - 2024
VITEEE
Mathematics
Application of derivatives
A, P, B are \( 3 \times 3 \) matrices. If \( |B| = 5 \), \( | BA^T | = 15 \), \( | P^T AP | = -27 \), then one of the values of \( | P | \) is:
VITEEE - 2024
VITEEE
Mathematics
Calculus
The number of students who take both the subjects mathematics and chemistry is 30. This represents 10% of the enrolment in mathematics and 12% of the enrolment in chemistry. How many students take at least one of these two subjects?
VITEEE - 2024
VITEEE
Mathematics
Complex numbers
If \( A \) and \( B \) are the two real values of \( k \) for which the system of equations \( x + 2y + z = 1 \), \( x + 3y + 4z = k \), \( x + 5y + 10z = k^2 \) is consistent, then \( A + B = \):
(a) 3
VITEEE - 2024
VITEEE
Mathematics
Binomial theorem
The area bounded by \( y - 1 = |x| \) and \( y + 1 = |x| \) is:
(a) \( \frac{1}{2} \)
VITEEE - 2024
VITEEE
Mathematics
Conic sections
If the two lines \( l_1: \frac{x - 2}{3} = \frac{y + 1}{-2} = \frac{z - 2}{0} \) and \( l_2: \frac{x - 1}{1} = \frac{y + 3}{\alpha} = \frac{z + 5}{2} \) are perpendicular, then the angle between the lines \( l_2 \) and \( l_3: \frac{x - 1}{-3} = \frac{y - 2}{-2} = \frac{z - 0}{4} \) is:
VITEEE - 2024
VITEEE
Mathematics
3-dimensional coordinate geometry
If
\(f(x) = \frac{\log(\pi + x)}{\log(e + x) }\)
, then the function is:
VITEEE - 2024
VITEEE
Mathematics
Differentiation
The solution of the differential equation:
\[ x^4 \frac{dy}{dx} + x^3 y + \csc(xy) = 0 \]
is equal to:
VITEEE - 2024
VITEEE
Mathematics
Indefinite Integrals
If the solution of
\[ \left( 1 + 2e^\frac{x}{y} \right) dx + 2e^\frac{x}{y} \left( 1 - \frac{x}{y} \right) dy = 0 \]
is
\[ x + \lambda y e^\frac{x}{y} = c \quad \text{(where \(c\) is an arbitrary constant), then \( \lambda \) is:} \]
VITEEE - 2024
VITEEE
Mathematics
Some Properties of Definite Integrals
The probability distribution of a random variable is given below:
\[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline X = x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline P(X = x) & 0 & K & 2K & 2K & 3K & K^2 & 2K^2 & 7K^2 + K \\ \hline \end{array}\]
Find \( P(0<X<5) \).
VITEEE - 2024
VITEEE
Mathematics
Area under Simple Curves
The integral \( I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx \) is equal to:
VITEEE - 2024
VITEEE
Mathematics
Linear Programming Problem and its Mathematical Formulation
A and B are independent events of a random experiment if and only if:
VITEEE - 2024
VITEEE
Mathematics
Relations and functions
Negation of the statement \( (p \land r) \rightarrow (r \lor q) \) is:
VITEEE - 2024
VITEEE
Mathematics
Boolean Algebra
The number of different permutations of all the letters of the word "PERMUTATION" such that any two consecutive letters in the arrangement are neither both vowels nor both identical is:
VITEEE - 2024
VITEEE
Mathematics
mathematical reasoning
Prev
1
...
7
8
9
10
11
...
49
Next