>
UPSEE
>
Mathematics
List of top Mathematics Questions asked in UPSEE
If
$\cos \, 3x \, \cos \, 2x \, \cos \, x = \frac{1}{4} $
and
$0 < x < \frac{\pi}{4}$
, then the value of
$x$
is
UPSEE - 2018
UPSEE
Mathematics
Trigonometric Functions
If
$(1 + \tan \, 1^{\circ})(1 + \tan \, 2^{\circ}) ...... (1 + \tan \, 45^{\circ}) = 2^n$
, then n is
UPSEE - 2018
UPSEE
Mathematics
Trigonometric Identities
If
$\cos^{-1} \frac{3}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} k$
, then the value of
$k$
is
UPSEE - 2018
UPSEE
Mathematics
Inverse Trigonometric Functions
If
$\log_{\sin \frac{\pi}{6}} \left\{\frac{\left|z-2\right| + 3 }{3\left|z - 2\right| - 1 }\right\}>1 $
, then
UPSEE - 2017
UPSEE
Mathematics
Exponential and Logarithmic Functions
The value of the integral
$\int \frac{dx}{x \sqrt{x^{2} - a^{2}} } $
is equal to:
UPSEE - 2017
UPSEE
Mathematics
Methods of Integration
The maximum value of the function
$y = 2 \, \tan \, x - \tan^2 \, x $
over
$\left[ 0 , \frac{\pi}{2} \right]$
is :
UPSEE - 2017
UPSEE
Mathematics
Maxima and Minima
The
$\displaystyle \lim_{x \to \frac{\pi}{2}} \left\{ 2x \tan x - \frac{\pi}{\cos x }\right\} $
is
UPSEE - 2017
UPSEE
Mathematics
Limits
The point of inflection of the function
$y - \int^{x}_{0} \left(t^{2} - 3t + 2 \right) dt $
is
UPSEE - 2017
UPSEE
Mathematics
Maxima and Minima
A chord of the parabola
$y = x^2 - 2x + 5$
joins the point with the abscissas
$x_1 =1, x_2 = 3$
Then the equation of the tangent to the parabola parallel to the chord is :
UPSEE - 2017
UPSEE
Mathematics
Parabola
The points of the curve
$y = x^3 + x - 2$
at which its tangents are parallel to the straight line
$y = 4x - 1$
are
UPSEE - 2017
UPSEE
Mathematics
Tangents and Normals
For what interval of variation of
$x$
, the identity
$arc \, \cos \frac{1 - x^2}{1 + x^2} = - 2 \, arc \, \tan \, x$
is true ?
UPSEE - 2017
UPSEE
Mathematics
Trigonometric Identities
If a , b , c are three vectors such that
$[ a\,b\,c]= 5 $
then the value of
$[a \times b , \times c , \,c \times a] $
is :
UPSEE - 2017
UPSEE
Mathematics
Product of Two Vectors
The
$\displaystyle\lim_{y \to a} \left\{ \left(\sin \frac{y-a}{2}\right) . \left(\tan \frac{\pi y}{2a}\right)\right\} $
is
UPSEE - 2017
UPSEE
Mathematics
Limits
Let
$l_{n } = \frac{2^{n } + \left(-2\right)^{n} }{2^{n}} $
and
$L_{n} = \frac{2^{n} + \left(- 2\right)^{n}}{3^{n}}$
then as
$ n \to\infty$
UPSEE - 2017
UPSEE
Mathematics
Limits
Let $f(x) = \begin{cases} a (x) \sin \frac{\pi \ x }{2} & \text{for } x \neq 0 \\ -(n+1)/2 & \text{for} x = 0 \end{cases} $ where
$\alpha (x) $
is such that
$\displaystyle\lim_{x \to 0} |\alpha (x) | = \infty $
Then the function
$f(x)$
is continuous at
$x = 0$
if
$\alpha (x) $
is chosen as
UPSEE - 2017
UPSEE
Mathematics
Limits
Let $f(x) = \begin{cases} - 2 \sin x & \quad \text{if } x \leq - \frac{\pi}{2}\\ A \ \sin x + B & \quad \text{if } - \frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos & \quad \text{if } x \leq \frac{\pi}{2} \end{cases} $ For what values of A and B, the function
$f (x)$
is continuous throughout the real line ?
UPSEE - 2017
UPSEE
Mathematics
Definite Integral
The derivative of
$y = x^{\sin\,x}$
is
UPSEE - 2016
UPSEE
Mathematics
Logarithmic Differentiation
Value of
$\left[\left(\log_{b}\,a\right)\left(\log_{c}\,b\right)\left(\log_{a}\,c\right)\right]$
is
UPSEE - 2016
UPSEE
Mathematics
Exponential and Logarithmic Functions
$\sin^{2}\,\theta\, \cos^{3}\,\theta-\sin^{4}\,\theta\, \cos\,\theta$
is equal
UPSEE - 2016
UPSEE
Mathematics
Inverse Trigonometric Functions
$\log_3\,2, \log_6\,2, \log_{12}\,2$
are in
UPSEE - 2016
UPSEE
Mathematics
Exponential and Logarithmic Functions
If function
$f(x) = \begin{cases} x\, \sin\left(\frac{1}{x} \right) ; & \text{x $
\ne
$ 0} \\[2ex] a \,;& \text{x = 0} \end{cases}$
is continuous at
$x = 0$
, then value of
$a$
is
UPSEE - 2016
UPSEE
Mathematics
Limits
The tangents to curve
$y=x^{3}-2x^2+x-2$
which are parallel to straight line
$y = x$
are
UPSEE - 2016
UPSEE
Mathematics
Tangents and Normals
Two vectors
$A = 3$
and
$B = 4$
are perpendicular. Resultant of both these vectors is
$R$
. The projection of the vector
$B$
on the vector
$R$
is
UPSEE - 2016
UPSEE
Mathematics
Vectors
Value of the following expression is
$\displaystyle \lim_{n \to \infty}$
$\frac{1}{n^{3}}\left(1^{2}+2^{2}+3^{2}+ ..... +n^{2}\right)$
UPSEE - 2016
UPSEE
Mathematics
Limits
The Solution of the differential equation
$\left(x+2y^{3}\right) \frac{dy}{dx}=y$
is
UPSEE - 2016
UPSEE
Mathematics
General and Particular Solutions of a Differential Equation
Prev
1
2
3
Next