The tension applied to a metal wire of one metre length produces an elastic strain of 1%. The density of the metal is \( 8000 \, kg/m^3 \) and Young's modulus of the metal is \( 2 \times 10^{11} \, Nm^{-2} \). The fundamental frequency of the transverse waves in the metal wire is:
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]
When \( |x| < 2 \), the coefficient of \( x^2 \) in the power series expansion of
\[ \frac{x}{(x-2)(x-3)} \]
is:
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $
The equation of the circle passing through the origin and cutting the circles $x^2 + y^2 + 6x - 15 = 0$ and $x^2 + y^2 - 8y - 10 = 0$ orthogonally is:
If the function
$ f(x) = \begin{cases} \frac{\cos ax - \cos 9x}{x^2}, & \text{if } x \neq 0 \\ 16, & \text{if } x = 0 \end{cases} $
is continuous at $ x = 0 $, then $ a = ? $