Step 1: Understanding Bond Order
The bond order of a molecule is given by the formula:
\[
\text{Bond Order} = \frac{1}{2} \left( \text{Number of bonding electrons} - \text{Number of antibonding electrons} \right)
\]
We will calculate the bond order for \( O_2 \), \( O_2^- \), \( O_2^{2-} \), and \( O_2^+ \) using this formula.
Step 2: Bond Order of \( O_2 \)
For the molecule \( O_2 \), the molecular orbital configuration is:
\[
\sigma_{1s}^2 \sigma_{1s}^*^2 \sigma_{2s}^2 \sigma_{2s}^*^2 \sigma_{2p_z}^2 \pi_{2p_x}^2 \pi_{2p_y}^2 \pi_{2p_x}^*^1 \pi_{2p_y}^*^1
\]
The number of bonding electrons is \( 10 \), and the number of antibonding electrons is \( 6 \). Thus, the bond order is:
\[
\text{Bond Order of } O_2 = \frac{1}{2} (10 - 6) = 2
\]
Step 3: Bond Order of \( O_2^- \)
For the \( O_2^- \) ion, the molecular orbital configuration is:
\[
\sigma_{1s}^2 \sigma_{1s}^*^2 \sigma_{2s}^2 \sigma_{2s}^*^2 \sigma_{2p_z}^2 \pi_{2p_x}^2 \pi_{2p_y}^2 \pi_{2p_x}^*^2 \pi_{2p_y}^*^1
\]
The number of bonding electrons is \( 11 \), and the number of antibonding electrons is \( 6 \). Thus, the bond order is:
\[
\text{Bond Order of } O_2^- = \frac{1}{2} (11 - 6) = 2.5
\]
Step 4: Bond Order of \( O_2^{2-} \)
For the \( O_2^{2-} \) ion, the molecular orbital configuration is:
\[
\sigma_{1s}^2 \sigma_{1s}^*^2 \sigma_{2s}^2 \sigma_{2s}^*^2 \sigma_{2p_z}^2 \pi_{2p_x}^2 \pi_{2p_y}^2 \pi_{2p_x}^*^2 \pi_{2p_y}^*^2
\]
The number of bonding electrons is \( 12 \), and the number of antibonding electrons is \( 6 \). Thus, the bond order is:
\[
\text{Bond Order of } O_2^{2-} = \frac{1}{2} (12 - 6) = 3
\]
Step 5: Bond Order of \( O_2^+ \)
For the \( O_2^+ \) ion, the molecular orbital configuration is:
\[
\sigma_{1s}^2 \sigma_{1s}^*^2 \sigma_{2s}^2 \sigma_{2s}^*^2 \sigma_{2p_z}^2 \pi_{2p_x}^2 \pi_{2p_y}^2 \pi_{2p_x}^*^1 \pi_{2p_y}^*^0
\]
The number of bonding electrons is \( 9 \), and the number of antibonding electrons is \( 5 \). Thus, the bond order is:
\[
\text{Bond Order of } O_2^+ = \frac{1}{2} (9 - 5) = 2
\]
Step 6: Total Sum of Bond Orders
Now, we sum the bond orders of \( O_2 \), \( O_2^- \), \( O_2^{2-} \), and \( O_2^+ \):
\[
\text{Total Sum of Bond Orders} = 2 + 2.5 + 3 + 2 = 9.5
\]
Thus, the sum of the bond orders is \( \boxed{9} \).