Let π1, π2 be a random sample from a π(0, π) distribution, where π>0 is an unknown parameter. For testing the null hypothesis π»0 βΆ πβ(0,1]βͺ[2, β) against π»1: πβ(1, 2), consider the critical region
\(π
={(π₯_1, π₯_2 )ββ Γ ββΆ\frac{5}{4}<max\,{π₯_1, π₯_2 }<\frac{7}{4}}. \)
Then, the size of the critical region equals____.