To determine the correct exponents πΌ, π½, and πΎ for expressing Youngβs modulus of elasticity, π, in terms of the gravitational constant πΊ, Planckβs constant β, and the speed of light π, we must equate the dimensions on both sides of the equation: π = ππΌβπ½πΊπΎ. The dimension of Youngβs modulus π is [ML-1T-2].
Let's consider the dimensions of each of the constants:
The equation becomes: [ML-1T-2] = [LT-1]πΌ[ML2T-1]π½[M-1L3T-2]πΎ.
Equating dimensions on both sides:
Solving these equations:
This provides the correct exponents: Ξ± = 7, Ξ² = -1, Ξ³ = -2, confirming the correct Option:
πΌ = 7, π½ = β1, πΎ = β2.
The given equation is:
\(Y = c^\alpha h^\beta G^\gamma\)
We are also given the following dimensional relations:
\([M L^{-1} T^{-2}] = [M^0 L^1 T^{-1}]^\alpha [M L^2 T^{-1}]^\beta [M^{-1} L^3 T^{-2}]^\gamma\)
Equating the powers of \( M \), \( L \), and \( T \), we get the following system of equations:
\(1 = \beta - \gamma\)
\(-1 = \alpha + 2\beta + 3\gamma\)
\(-2 = -\alpha - \beta - 2\gamma\)
Now, solving this system of equations:
From the first equation: \( \beta = 1 + \gamma \)
Substitute this into the second and third equations:
\(-1 = \alpha + 2(1 + \gamma) + 3\gamma\)
\(-2 = -\alpha - (1 + \gamma) - 2\gamma\)
Solving these equations results in:
\(\alpha = 7, \quad \beta = -1, \quad \gamma = -2\)
Thus, the correct option is (A): \( \alpha = 7 \), \( \beta = -1 \), \( \gamma = -2 \).
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Read More: Youngβs Double Slit Experiment