The dimensions of Young's modulus of elasticity (π) are [π][πΏ]β»ΒΉ[π]β»Β², where [π] represents mass, [πΏ] represents length, and [π] represents time.
Let's analyze the dimensions of each derived quantity:
The speed of light (π) has dimensions [πΏ][π]β»ΒΉ.
Planck's constant (β) has dimensions [π][πΏ]Β²[π]β»ΒΉ.
The gravitational constant (πΊ) has dimensions [π]β»ΒΉ[πΏ]Β³[π]β»Β².
Substituting the dimensions of π, β, and πΊ into the expression π = ππΌβπ½πΊπΎ, we have:
[π][πΏ]β»ΒΉ[π]β»Β² = ([πΏ][π]β»ΒΉ)Ξ±([π][πΏ]Β²[π]β»ΒΉ)Ξ²([π]β»ΒΉ[πΏ]Β³[π]β»Β²)Ξ³.
By equating the dimensions on both sides of the equation, we can set up the following equations:
For mass dimension: 1 = 0 + Ξ² - Ξ³.
For length dimension: -1 = 1Ξ± + 2Ξ² + 3Ξ³.
For time dimension: -2 = -1Ξ± - Ξ² - 2Ξ³.
Solving these equations simultaneously will allow us to determine the values of πΌ, π½, and πΎ.
Solving the equations, we find that πΌ = 7, π½ = -1, and πΎ = -2.
Therefore, the correct option is (A) πΌ = 7, π½ = -1, πΎ = -2.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is