1.Calculate\(\sqrt{486}\)
\(\sqrt{486} = \sqrt{9 \times 54} = 3\sqrt{54} \approx 3\sqrt{49 + 5} \approx 3\sqrt{49} + 3\sqrt{5} \approx 7 + 3\sqrt{5}\)
2.Calculate 21% of 32:
21% of 32 =\(\frac{21}{100}\)x 32=\(\frac{672}{100}\)=6.72
Add the results from steps 1 and 2:
\((7+\sqrt{5})+6.72≈13.72+\sqrt5\)
Now, let's determine which of the provided options is closest to this result:
(1) 35 (2) 40 (3) 20 (4) 28 (5) 32
None of the options exactly equals 13.72+\(\sqrt{5}\), but option (4) is the closest. Thus, the best approximation to the result is 28.
The Correct option is(D)