1.Calculate\(\sqrt{486}\) \(\sqrt{486} = \sqrt{9 \times 54} = 3\sqrt{54} \approx 3\sqrt{49 + 5} \approx 3\sqrt{49} + 3\sqrt{5} \approx 7 + 3\sqrt{5}\) 2.Calculate 21% of 32: 21% of 32 =\(\frac{21}{100}\)x 32=\(\frac{672}{100}\)=6.72 Add the results from steps 1 and 2: \((7+\sqrt{5})+6.72≈13.72+\sqrt5\) Now, let's determine which of the provided options is closest to this result: (1) 35 (2) 40 (3) 20 (4) 28 (5) 32 None of the options exactly equals 13.72+\(\sqrt{5}\), but option (4) is the closest. Thus, the best approximation to the result is 28. The Correct option is(D)