Question:

What is the value of \(7^{\left(3+\log_7 5\right)} \) ?

Show Hint

Use the identity \(a^{\log_a b} = b\) to quickly simplify exponential-logarithmic expressions.
Updated On: Jan 14, 2026
  • 1575
  • 3140
  • 1715
  • 3460
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Split the exponent using laws of exponents.
\[ 7^{\left(3+\log_7 5\right)} = 7^3 \cdot 7^{\log_7 5} \] Step 2: Apply logarithmic identity.
Using \(a^{\log_a b} = b\):
\[ 7^{\log_7 5} = 5 \] Step 3: Multiply the terms.
\[ 7^3 = 343 \]
\[ 343 \times 5 = 1715 \] Step 4: Final calculation.
\[ 7^{\left(3+\log_7 5\right)} = 1715 \] Final Answer:
\[ \boxed{1715} \]
Was this answer helpful?
0
0

Questions Asked in NMAT exam

View More Questions