Step 1: Given,
\[
2f(x)-3f\!\left(\frac{1}{x}\right)=x^2 \qquad (1)
\]
Replace \(x\) by \(\dfrac{1}{x}\):
\[
2f\!\left(\frac{1}{x}\right)-3f(x)=\frac{1}{x^2} \qquad (2)
\]
Step 2: Write equations (1) and (2) in standard form:
\[
2f(x)-3f\!\left(\frac{1}{x}\right)=x^2
\]
\[
-3f(x)+2f\!\left(\frac{1}{x}\right)=\frac{1}{x^2}
\]
Step 3: Multiply equation (1) by \(2\) and equation (2) by \(3\):
\[
4f(x)-6f\!\left(\frac{1}{x}\right)=2x^2
\]
\[
-9f(x)+6f\!\left(\frac{1}{x}\right)=\frac{3}{x^2}
\]
Step 4: Add the above equations:
\[
-5f(x)=2x^2+\frac{3}{x^2}
\]
\[
f(x)=-\frac{2x^2+\frac{3}{x^2}}{5}
\]
Step 5: Substitute \(x=2\):
\[
f(2)=-\frac{2(2)^2+\frac{3}{(2)^2}}{5}
=-\frac{8+\frac{3}{4}}{5}
=-\frac{\frac{35}{4}}{5}
=-\frac{7}{4}
\]