Let \(\frac{x}{(x^2+1)(x-1)} = \frac{AX+B}{(x^2+1)}+\frac{c}{(x-1)}\)
x = (Ax+B)(x-1)+C (x2+1)
x = Ax2-Ax+Bx-B+Cx2+C
Equating the coefficients of x2 , x, and constant term, we obtain
A + C = 0
−A + B = 1
−B + C = 0
On solving these equations, we obtain
A = -\(\frac{1}{2}\), B =\(\frac{1}{2}\) and C=\(\frac{1}{2}\)
From equation (1), we obtain
∴\(\frac{x}{(x^2+1)(x-1)}=\frac{\bigg(-\frac{1}{2}x+\frac{1}{2}\bigg)}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}\)
\(\Rightarrow \int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{2}\int\frac{x}{(x^2+1}dx+\frac{1}{2}\int\frac{1}{x^2+1}dx+\frac{1}{2}\int\frac{1}{x-1}dx\)
\(= -\frac{1}{4}\int\frac{2x}{x^2+1}dx+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C\)
\(Consider \int\frac{2x}{x^2+1}dx, let(x^2+1) = t \Rightarrow 2xdx = dt\)
\(\Rightarrow\int\frac{2x}{x^2+1}dx=\int \frac{dt}{t}=\log\mid t\mid=\log\mid x^2+1\mid\)
∴ \(\int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{4}\log\mid x^2+1 \mid+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C\)
=\(\frac{1}{2}\log\mid x-1\mid-\frac{1}{4}\log\mid x^2+1\mid+\frac{1}{2}\tan^{-1}x+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
