Let \(\frac{x}{(x^2+1)(x-1)} = \frac{AX+B}{(x^2+1)}+\frac{c}{(x-1)}\)
x = (Ax+B)(x-1)+C (x2+1)
x = Ax2-Ax+Bx-B+Cx2+C
Equating the coefficients of x2 , x, and constant term, we obtain
A + C = 0
−A + B = 1
−B + C = 0
On solving these equations, we obtain
A = -\(\frac{1}{2}\), B =\(\frac{1}{2}\) and C=\(\frac{1}{2}\)
From equation (1), we obtain
∴\(\frac{x}{(x^2+1)(x-1)}=\frac{\bigg(-\frac{1}{2}x+\frac{1}{2}\bigg)}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}\)
\(\Rightarrow \int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{2}\int\frac{x}{(x^2+1}dx+\frac{1}{2}\int\frac{1}{x^2+1}dx+\frac{1}{2}\int\frac{1}{x-1}dx\)
\(= -\frac{1}{4}\int\frac{2x}{x^2+1}dx+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C\)
\(Consider \int\frac{2x}{x^2+1}dx, let(x^2+1) = t \Rightarrow 2xdx = dt\)
\(\Rightarrow\int\frac{2x}{x^2+1}dx=\int \frac{dt}{t}=\log\mid t\mid=\log\mid x^2+1\mid\)
∴ \(\int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{4}\log\mid x^2+1 \mid+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C\)
=\(\frac{1}{2}\log\mid x-1\mid-\frac{1}{4}\log\mid x^2+1\mid+\frac{1}{2}\tan^{-1}x+C\)
What is the Planning Process?
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,