The Compton shift formula is:
$\Delta \lambda = \frac{h}{m_e c}(1 - \cos \theta).$
For $\theta = 45^\circ$, and using $\frac{h}{m_e c} \approx 2.43 \text{ pm},$
$\Delta \lambda = 2.43 \text{ pm} \times (1 - \cos 45^\circ)$
$\approx 2.43 \text{ pm} \times 0.2929$
$\approx 0.71 \text{ pm}.$
$\lambda_{\text{scattered}} = \lambda_{\text{initial}} + \Delta \lambda = 10.0 \text{ pm} + 0.71 \text{ pm} = 10.71 \text{ pm} \approx 10.7 \text{pm}.$
List I | List II |
---|---|
(A) (∂S/∂P)T | (I) (∂P/∂T)V |
(B) (∂T/∂V)S | (II) (∂V/∂S)P |
(C) (∂T/∂P)S | (III) -(∂V/∂T)P |
(D) (∂S/∂V)T | (IV) -(∂P/∂S)V |
Ultraviolet light of wavelength 350 nm and intensity \(1.00Wm^{−2 }\) falls on a potassium surface. The maximum kinetic energy of the photoelectron is