Compton shift formula: $\Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta)$. For backscatter, $\theta = 180^\circ \implies \cos 180^\circ = -1$.
Thus,
$\Delta \lambda = \frac{h}{m_e c} [1 - (-1)] = 2 \frac{h}{m_e c} $
= $2 \times 2.43 \times 10^{-12} \text{ m}$
= $4.86 \times 10^{-12} \text{ m}.$
List I | List II |
---|---|
(A) (∂S/∂P)T | (I) (∂P/∂T)V |
(B) (∂T/∂V)S | (II) (∂V/∂S)P |
(C) (∂T/∂P)S | (III) -(∂V/∂T)P |
(D) (∂S/∂V)T | (IV) -(∂P/∂S)V |
Ultraviolet light of wavelength 350 nm and intensity \(1.00Wm^{−2 }\) falls on a potassium surface. The maximum kinetic energy of the photoelectron is