Compton shift formula: $\Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta)$. For backscatter, $\theta = 180^\circ \implies \cos 180^\circ = -1$.
Thus,
$\Delta \lambda = \frac{h}{m_e c} [1 - (-1)] = 2 \frac{h}{m_e c} $
= $2 \times 2.43 \times 10^{-12} \text{ m}$
= $4.86 \times 10^{-12} \text{ m}.$