Ultraviolet light of wavelength 350 nm and intensity \(1.00Wm^{−2 }\) falls on a potassium surface. The maximum kinetic energy of the photoelectron is
Energy of incident photon, $E_\gamma = \frac{hc}{\lambda}$.
Using $h = 6.626 \times 10^{-34} \text{ J s}, c = 3.0 \times 10^8 \text{ m/s}, \lambda = 350 \times 10^{-9} \text{ m},$ and $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$, we get:
$E_\gamma = \frac{(6.626 \times 10^{-34} \text{ J s}) \times (3.0 \times 10^8 \text{ m/s})}{350 \times 10^{-9} \text{ m}} $
$\approx 5.68 \times 10^{-19} \text{ J} $
$\approx \frac{5.68 \times 10^{-19} \text{ J}}{1.602 \times 10^{-19} \text{ J/eV}} $
$\approx 3.55 \text{ eV}. $
If the work function $(\phi)$ of potassium is taken to be $\approx 2.25 \text{ eV}$ (a commonly cited value in some references), then the maximum kinetic energy of the photoelectrons is
$K_{\text{max}} = E_\gamma - \phi $
$= 3.55 \text{ eV} - 2.25 \text{ eV} $
$= 1.30 \text{ eV}. $
Thus the maximum kinetic energy is approximately $\boxed{1.3 \text{ eV}}$.
Europium (Eu) resembles Calcium (Ca) in the following ways:
(A). Both are diamagnetic
(B). Insolubility of their sulphates and carbonates in water
(C). Solubility of these metals in liquid NH3
(D). Insolubility of their dichlorides in strong HCI
Choose the correct answer from the options given below: