Question:

Ultraviolet light of wavelength 350 nm and intensity \(1.00Wm^{−2 }\) falls on a potassium surface. The maximum kinetic energy of the photoelectron is

Show Hint

Various data sources may list slightly different work function values for potassium, from about 2.2eV up to 2.3eV. Here, choosing ϕ ≈ 2.25 eV leads to a final answer of 1.30eV, matching option (d).
Updated On: Jan 6, 2025
  • 3.3 eV
  • 1.9 eV
  • 3.2 eV
  • 1.3 eV
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Energy of incident photon, $E_\gamma = \frac{hc}{\lambda}$.
Using $h = 6.626 \times 10^{-34} \text{ J s}, c = 3.0 \times 10^8 \text{ m/s}, \lambda = 350 \times 10^{-9} \text{ m},$ and $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$, we get:

$E_\gamma = \frac{(6.626 \times 10^{-34} \text{ J s}) \times (3.0 \times 10^8 \text{ m/s})}{350 \times 10^{-9} \text{ m}} $

 $\approx 5.68 \times 10^{-19} \text{ J} $

$\approx \frac{5.68 \times 10^{-19} \text{ J}}{1.602 \times 10^{-19} \text{ J/eV}} $ 

$\approx 3.55 \text{ eV}. $
If the work function $(\phi)$ of potassium is taken to be $\approx 2.25 \text{ eV}$ (a commonly cited value in some references), then the maximum kinetic energy of the photoelectrons is
 $K_{\text{max}} = E_\gamma - \phi  $
 $= 3.55 \text{ eV} - 2.25 \text{ eV} $
 $= 1.30 \text{ eV}. $
Thus the maximum kinetic energy is approximately $\boxed{1.3 \text{ eV}}$.

Was this answer helpful?
0
0

Top Questions on Thermodynamics and Statistical Mechanics

View More Questions