Using Wien's displacement law: $\lambda_{\text{max}} T \approx 2.9 \times 10^{-3} \text{ m} \cdot \text{K}$. Given $\lambda_{\text{max}} = 446 \text{ nm} = 446 \times 10^{-9} \text{m}$,
$T = \frac{2.9 \times 10^{-3}}{446 \times 10^{-9}}$
$\approx \frac{2.9 \times 10^{-3}}{4.46 \times 10^{-7}}$
$\approx 6500 \text{ K}.$
Ultraviolet light of wavelength 350 nm and intensity \(1.00Wm^{−2 }\) falls on a potassium surface. The maximum kinetic energy of the photoelectron is
List I | List II |
---|---|
(A) (∂S/∂P)T | (I) (∂P/∂T)V |
(B) (∂T/∂V)S | (II) (∂V/∂S)P |
(C) (∂T/∂P)S | (III) -(∂V/∂T)P |
(D) (∂S/∂V)T | (IV) -(∂P/∂S)V |