The correct answer is: \(\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{x^2}{4}+C\) Let \(I=∫x(logx)^2 dx\) Taking\((logx)^2\) as first function and 1 as second function and integrating by parts,we obtain \(I=(logx)^2∫x.dx-∫[{\frac{d}{dx}logx)^2}∫x dx]dx\) \(=\frac{x^2}{2}(logx)^2-[∫2logx.\frac{1}{x}.\frac{x^2}{2}.dx]\) \(=\frac{x^2}{2}(logx)^2-∫xlogx. dx\) Again integrating by parts,we obtain \(I=\frac{x^2}{2}(logx)^2-[logx∫x dx-∫[{(\frac{d}{dx}logx)∫x dx}]dx]\) \(=\frac{x^2}{2}(logx)^2-[\frac{x^2}{2}-logx-∫\frac{1}{x}.\frac{x^2}{2}dx]\) \(=\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{1}{2}∫x dx\) \(=\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{x^2}{4}+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.