X g of nitrobenzene on nitration gave 4.2 g of m-dinitrobenzene. X =_____ g. (nearest integer) [Given : molar mass (in g mol\(^{-1}\)) C : 12, H : 1, O : 16, N : 14]
The reaction for the nitration of nitrobenzene to m-dinitrobenzene is: \[ \text{C}_6\text{H}_5\text{NO}_2 + \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{C}_6\text{H}_4(\text{NO}_2)_2 + \text{H}_2\text{O} \] Nitrobenzene (C\( _6 \)H\( _5 \)NO\( _2 \)) has a molar mass (MW) of: \[ (6 \times 12) + (5 \times 1) + (1 \times 14) + (2 \times 16) = 72 + 5 + 14 + 32 = 123 \, \text{g/mol} \] m-dinitrobenzene (C\( _6 \)H\( _4 \)N\( _2 \)O\( _4 \)) has a molar mass (MW) of: \[ (6 \times 12) + (4 \times 1) + (2 \times 14) + (4 \times 16) = 72 + 4 + 28 + 64 = 168 \, \text{g/mol} \] From the stoichiometry of the reaction, 1 mole of nitrobenzene produces 1 mole of m-dinitrobenzene.
Moles of m-dinitrobenzene produced = \( \frac{\text{mass of m-dinitrobenzene}}{\text{molar mass of m-dinitrobenzene}} \) \[ \text{Moles of m-dinitrobenzene} = \frac{4.2 \, \text{g}}{168 \, \text{g/mol}} = 0.025 \, \text{mol} \] Since the mole ratio of nitrobenzene to m-dinitrobenzene is 1:1, the moles of nitrobenzene reacted are also 0.025 mol.
Mass of nitrobenzene reacted (X) = moles of nitrobenzene × molar mass of nitrobenzene \[ X = 0.025 \, \text{mol} \times 123 \, \text{g/mol} = 3.075 \, \text{g} \] The nearest integer to 3.075 is 3. Therefore, X = 3 g.
Fortification of food with iron is done using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$. The mass in grams of the $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required to achieve 12 ppm of iron in 150 kg of wheat is _______ (Nearest integer).} (Given : Molar mass of $\mathrm{Fe}, \mathrm{S}$ and O respectively are 56,32 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ )
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)