X g of nitrobenzene on nitration gave 4.2 g of m-dinitrobenzene. X =_____ g. (nearest integer) [Given : molar mass (in g mol\(^{-1}\)) C : 12, H : 1, O : 16, N : 14]
The reaction for the nitration of nitrobenzene to m-dinitrobenzene is: \[ \text{C}_6\text{H}_5\text{NO}_2 + \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{C}_6\text{H}_4(\text{NO}_2)_2 + \text{H}_2\text{O} \] Nitrobenzene (C\( _6 \)H\( _5 \)NO\( _2 \)) has a molar mass (MW) of: \[ (6 \times 12) + (5 \times 1) + (1 \times 14) + (2 \times 16) = 72 + 5 + 14 + 32 = 123 \, \text{g/mol} \] m-dinitrobenzene (C\( _6 \)H\( _4 \)N\( _2 \)O\( _4 \)) has a molar mass (MW) of: \[ (6 \times 12) + (4 \times 1) + (2 \times 14) + (4 \times 16) = 72 + 4 + 28 + 64 = 168 \, \text{g/mol} \] From the stoichiometry of the reaction, 1 mole of nitrobenzene produces 1 mole of m-dinitrobenzene.
Moles of m-dinitrobenzene produced = \( \frac{\text{mass of m-dinitrobenzene}}{\text{molar mass of m-dinitrobenzene}} \) \[ \text{Moles of m-dinitrobenzene} = \frac{4.2 \, \text{g}}{168 \, \text{g/mol}} = 0.025 \, \text{mol} \] Since the mole ratio of nitrobenzene to m-dinitrobenzene is 1:1, the moles of nitrobenzene reacted are also 0.025 mol.
Mass of nitrobenzene reacted (X) = moles of nitrobenzene × molar mass of nitrobenzene \[ X = 0.025 \, \text{mol} \times 123 \, \text{g/mol} = 3.075 \, \text{g} \] The nearest integer to 3.075 is 3. Therefore, X = 3 g.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).