Question:

Integrate the function: \(\frac {x+2}{\sqrt {x^2-1}}\)

Updated On: Oct 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let x+2 = A\(\frac {d}{dx}\)(x2-1) + B                .....(1)

⇒ x+2 = A(2x)+B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 1 ⇒ A = \(\frac 12\)

B = 2

From (1), we obtain

(x+2) = \(\frac 12\)(2x)+2

Then, \(∫\)\(\frac {x+2}{\sqrt {x^2-1}}\  dx\) = \(∫\frac {\frac 12(2x)+2}{\sqrt {x^2-1}}\)         .....(2)

In \(\frac 12 ∫\frac {2x}{\sqrt {x^2-1}}\ dx\) dx, let x2-1 = t ⇒ 2x dx = dt

\(\frac 12 ∫\frac {2x}{\sqrt {x^2-1}}\ dx\)\(\frac 12 ∫\frac {dt}{\sqrt t}\)

\(\frac 12[2\sqrt t]\)

=\(\sqrt t\)

=\(\sqrt {x^2-1}\)

Then, \(∫\frac {2}{\sqrt {x^2-1}}\ dx\) = \(2∫\frac {x}{\sqrt {x^2-1}}\ dx\) = \(2\ log\ |x+\sqrt {x^2-1}|\)

From equation (2), we obtain 

\(∫\)\(\frac {x+2}{\sqrt {x^2-1}}\  dx\) = \(\sqrt {x^2-1}+2\ log\ |x+\sqrt {x^2-1}|+C\)

Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.