Question:

$ \underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{{{x}^{77}}-{{2}^{77}}} $ is equal to

Updated On: Apr 15, 2024
  • $ \frac{100}{77} $
  • $ \frac{100}{77}({{2}^{22}}) $
  • $ \frac{100}{77}({{2}^{21}}) $
  • $ \frac{100}{77}({{2}^{23}}) $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$ \underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{{{x}^{77}}-{{2}^{27}}} $
$=\underset{x\to 2}{\mathop{\lim }}\,\frac{{{x}^{100}}-{{2}^{100}}}{x-2}\times \frac{x-2}{{{x}^{77}}-{{2}^{77}}} $ $ \left( \because \underset{x\to a}{\mathop{\lim }}\,\frac{{{x}^{m}}-{{a}^{m}}}{x-a}=m{{a}^{m-1}} \right) $
$=\underset{x\to 2}{\mathop{\lim }}\,\left( \frac{{{x}^{100}}-{{2}^{100}}}{x-2} \right)\times \frac{1}{\underset{x\to 2}{\mathop{\lim }}\,\left( \frac{{{x}^{77}}-{{2}^{77}}}{x-2} \right)} $
$=100{{(2)}^{99}}\times \frac{1}{77{{(2)}^{76}}} $
$=\frac{100}{77}{{(2)}^{23}} $
Was this answer helpful?
6
0

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives