Question:

$ \int{{{x}^{2}}\,{{7}^{x}}\,\,dx} $ is equal to

Updated On: Jun 23, 2024
  • $ \frac{{{x}^{2}}{{7}^{x}}}{\log \,7}+2x\frac{{{7}^{x}}}{{{(\log \,7)}^{2}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+c $
  • $ \frac{{{x}^{2}}{{7}^{x}}}{\log \,7}-2x\frac{{{7}^{x}}}{{{(\log \,7)}^{2}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+c $
  • $ {{x}^{2}}{{7}^{x}}-2x\,\frac{7x}{\log \,7}+2\,\frac{7x}{{{(\log \,7)}^{2}}}+c $
  • $ \frac{{{x}^{2}}{{7}^{x}}}{{{(\log \,7)}^{2}}}-2x\,\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{4}}}+c $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$ \int{{{x}^{2}}}\,.\,\,{{7}^{x}}\,\,dx $
$ =\frac{{{x}^{2}}{{.7}^{x}}}{\log \,7}-\int{\frac{2x.\,{{7}^{x}}}{log\,7}}\,dx+c $
$ =\frac{{{x}^{2}}{{.7}^{x}}}{\log 7}-\frac{2}{\log 7}[\int{x{{.7}^{x}}\,dx]+c} $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.