Question:

Integrate the function: \(\frac{x+2}{\sqrt{4x-x^2}}\)

Updated On: Oct 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let x+2 = A\(\frac{d}{dx}\)(4x-x2)+B
⇒ x+2 = A(4-2x)+B
Equating the coefficients of x and constant term on both sides, we obtain
-2A = 1 ⇒ A = \(\frac{-1}{2}\)
4A + B = 2 ⇒ B =4
⇒ (x+2) =\(\frac{-1}{2}\)(4-2x)+4
∴ ∫\(\frac{x+2}{\sqrt{4x-x^2}}\) dx = ∫-1/2(4-2x)+4/√4x-x2 dx
\(\frac{-1}{2}\)\(\frac{4-2x}{\sqrt{4x-x^2}}\) dx+4 ∫\(\frac{1}{\sqrt{4x-x^2}}\) dx
Let I1 = ∫\(\frac{4-2x}{\sqrt{4x-x^2}}\) dx and I2 =∫\(\frac{1}{\sqrt{4x-x^2}}\) dx
∴ ∫x+2/√4x-x2 dx = \(\frac{-1}{2}\) I1+4I2                                              ...(1)
then, I1 = ∫4-2x/√4x-x2 dx
Let 4x-x2 = t
⇒ (4-2x)dx = dt
⇒I1 = ∫dt/√t = 2√t = 2√4x-x2                                               ...(2)
 I2 = ∫1/√4x-x2 dx
⇒ 4x-x2 = -(-4x+x2)
=(-4x+x2+4-4)
=4-(x-2)2
=(2)2-(x-2)2

∴ I2 = ∫1/√(2)2-(x-2)2 dx = sin-1\((\frac{x-2}{2})\)                                   ...(3)

Using equations (2) and (3) in (1), we obtain

∫x+2/√4x-x2 dx = -1/2(2√4x-x2)+4sin-1\((\frac{x-2}{2})\)+C

\(-\sqrt{4x-x^2}+4sin^{-1}\)\((\frac{x-2}{2})\))+C

Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.