Question:

\(x\sqrt{1+y}+y\sqrt{1+x}=0\), for -1<x<1,prove that \(\frac{dy}{dx}\)=\(-\)\(\frac{1}{(1+x)^2}\)

Updated On: Sep 14, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

It is given that 
\(x\sqrt{1+y}+y\sqrt{1+x}=0\)
⇒ \(x\sqrt{1+y}=-y\sqrt{1+x}\)
squaring both sides, we obtain x2(1+y)=y2(1+x)
⇒ x2+x2y=y2+xy2
⇒ x2-y2=xy2-x2y
⇒ x2-y2=xy(y-x)
⇒ (x+y)(x-y)=xy(y-x)
∴x+y=-xy
⇒ (1+x)y=-x
⇒ y=-x/(1+x)
Differentiating both sides with respect to x, we obtain
\(\frac{dy}{dx}=(1+x)\frac{d}{dx}(x)-x\frac{d}{dx}\frac{(1+x)}{(1+x)^2}=-(1+x)-\frac{x}{(1+x)^2}\)
=\(-\frac{1}{(1+x)^2}\)
Hence, it proved.

Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.