\(x\sqrt{1+y}+y\sqrt{1+x}=0\), for -1<x<1,prove that \(\frac{dy}{dx}\)=\(-\)\(\frac{1}{(1+x)^2}\)
It is given that
\(x\sqrt{1+y}+y\sqrt{1+x}=0\)
⇒ \(x\sqrt{1+y}=-y\sqrt{1+x}\)
squaring both sides, we obtain x2(1+y)=y2(1+x)
⇒ x2+x2y=y2+xy2
⇒ x2-y2=xy2-x2y
⇒ x2-y2=xy(y-x)
⇒ (x+y)(x-y)=xy(y-x)
∴x+y=-xy
⇒ (1+x)y=-x
⇒ y=-x/(1+x)
Differentiating both sides with respect to x, we obtain
\(\frac{dy}{dx}=(1+x)\frac{d}{dx}(x)-x\frac{d}{dx}\frac{(1+x)}{(1+x)^2}=-(1+x)-\frac{x}{(1+x)^2}\)
=\(-\frac{1}{(1+x)^2}\)
Hence, it proved.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by
Mathematically, a function is said to be continuous at a point x = a, if
It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is unspecified or does not exist, then we say that the function is discontinuous.