Question:

$ \underset{x\to 0}{\mathop{\lim }}\,\,\frac{\sin {{x}^{2}}}{1-\cos x} $ is

Updated On: Jun 23, 2024
  • $ \frac{1}{2} $
  • $ 0 $
  • $ 1 $
  • $ 2 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$ \underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{sin\,{{x}^{2}}}{1-\cos \,x} $
$=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{sin\,{{x}^{2}}}{2{{\sin }^{2}}\frac{x}{2}} $ $ \left[ \because \,\,1-\cos \,x=\,2{{\sin }^{2}}\frac{x}{2} \right] $
$=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin {{x}^{2}}/{{x}^{2}}}{2{{\sin }^{2}}\left( \frac{x}{2} \right)/{{x}^{2}}} $
$=\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin \,{{x}^{2}}}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}\left( \frac{x}{2} \right)}{\frac{{{x}^{2}}}{4}\times 4} $
$=1+\frac{2}{4}\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\{ \frac{\sin \frac{x}{2}}{x/2} \right\}}^{2}}\,\,\,\,\,\,\left[ \because \,\,\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{\sin x}{x}=1 \right] $
$=1+\frac{1}{2}\times 1 $
$=2 $
Was this answer helpful?
0
0

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives