Question:

$\displaystyle \lim_{x \to 0} \left(\frac{10}{9}\frac{sin \, 9x}{sin \, 10x}\right) \left(\frac{8}{7}\frac{sin \, 7x}{sin \, 8x}\right) \left(\frac{6}{5}\frac{sin \, 5x}{sin \, 6x}\right) \left(\frac{4}{3}\frac{sin \, 3x}{sin \, 4x}\right) \left(\frac{sin \, x}{sin \, 2x}\right) $ =

Updated On: May 4, 2024
  • $\frac{63}{256}$
  • $\frac{1}{6}$
  • $\frac{6}{5}$
  • $\frac{1}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$\underset{{x \rightarrow 0}}{\lim}\left(\frac{10}{9} \frac{\sin 9 x}{\sin 10 x}\right)\left(\frac{8}{7} \frac{\sin 7 x}{\sin 8 x}\right)$
$\left(\frac{6}{5} \frac{\sin 5 x}{\sin 6 x}\right)\left(\frac{4}{3} \frac{\sin 3 x}{\sin 4 x}\right)\left(\frac{\sin x}{\sin 2 x}\right)$
$=\underset{{x \rightarrow 0}}{\lim} \left(\frac{\sin 9 x}{9 x} \cdot \frac{1}{\frac{\sin 10 x}{10 x}}\right)\left(\frac{\sin 7 x}{7 x} \cdot \frac{1}{\frac{\sin 8 x}{8 x}}\right) $
$ =\left(\frac{\sin 5 x}{5 x} \cdot \frac{1}{\frac{\sin 6 x}{6 x}}\right)\left(\frac{\sin 3 x}{3 x} \cdot \frac{1}{\frac{\sin 4 x}{4 x}}\right) $
$ \left(\frac{\sin x}{x} \frac{1}{\frac{\sin 2 x}{2 x}} \cdot \frac{1}{2}\right) $
$=\frac{1}{2}\left[\because \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1\right]$
Was this answer helpful?
1
0

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives