a1 = 3, an = 3an-1 +2 for all n>1
⇒ a2 = 3a1 + 2 = 3(3) + 2 = 11
a3 = 3a2 +2 = 3(11) + 2 =35
a4 = 3a3+2 = 3(35) + 2 = 107
a5 = 3a4+2 = 3(107) + 2 = 323
Hence, the first five terms of the sequence are 3, 11, 35, 107, and 323.
The corresponding series is 3 + 11 + 35 + 107 + 323 + ….
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Give reasons for the following.
(i) King Tut’s body has been subjected to repeated scrutiny.
(ii) Howard Carter’s investigation was resented.
(iii) Carter had to chisel away the solidified resins to raise the king’s remains.
(iv) Tut’s body was buried along with gilded treasures.
(v) The boy king changed his name from Tutankhaten to Tutankhamun.
Find the mean deviation about the median for the data
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |