Write Minors and Cofactors of the elements of following determinants:
I. \(\begin{vmatrix}2&-4\\0&3\end{vmatrix}\)
II. \(\begin{vmatrix}a&c\\b&d\end{vmatrix}\)
I. The given determinant is \(\begin{vmatrix}2&-4\\0&3\end{vmatrix}\)
Minor of element aij is Mij.
∴M11 = minor of element a11 = 3
M12 = minor of element a12 = 0
M21 = minor of element a21 = −4
M22 = minor of element a22 = 2
Cofactor of aij is Aij = (−1)i+j Mij.
∴A11 = (−1)1+1 M11 = (−1)2 (3) = 3
A12 = (−1)1+2 M12 = (−1)3
(0) = 0
A21 = (−1)2+1 M21 = (−1)3
(−4) = 4
A22 = (−1)2+2 M22 = (−1)4
(2) = 2
(ii) The given determinant is \(\begin{vmatrix}a&c\\b&d\end{vmatrix}\)
Minor of element aij is Mij.
∴M11 = minor of element a11 = d
M12 = minor of element a12 = b
M21 = minor of element a21 = c
M22 = minor of element a22 = a
Cofactor of aij is Aij = (−1)i+j Mij
∴A11 = (−1)1+1 M11 = (−1)2
(d) = d
A12 = (−1)1+2 M12 = (−1)3
(b) = −b
A21 = (−1)2+1 M21 = (−1)3
(c) = −c
A22 = (−1)2+2 M22 = (−1)4
(a) = a
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
मोबाइल फोन विहीन दुनिया — 120 शब्दों में रचनात्मक लेख लिखिए :