\[
\cot x = \frac{\cos x}{\sin x}.
\]
Use substitution: Let \( u = \sin x \), so \( du = \cos x \, dx \), and:
\[
\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{1}{u} \, du = \ln |u| + c = \ln |\sin x| + c.
\]
Alternatively, the result can be written as:
\[
\int \cot x \, dx = \ln |\sin x| + c.
\]