(i) a = 10, d = 10
Let the series be \(a_1 , a_2 , a_3 , a_4 , a_5\) …
\(a_1\) = a = 10
\(a_2 = a_1\) + d = 10 + 10 = 20
\(a_3 = a_2\) + d = 20 + 10 = 30
\(a_4 = a_3\) + d = 30 + 10 = 40
\(a_5 = a_4\) + d = 40 + 10 = 50
Therefore, the series will be 10, 20, 30, 40, 50 …
⇒ The first four terms of this A.P. will be 10, 20, 30, and 40.
(ii) a = −2, d = 0
Let the series be \(a_1 , a_2 , a_3 , a_4\) …
\(a_1\)= a = −2
\(a_2 = a_1\) + d = − 2 + 0 = −2
\(a_3 = a_2\) + d = − 2 + 0 = −2
\(a_4 = a_3\) + d = − 2 + 0 = −2
Therefore, the series will be −2, −2, −2, −2 …
⇒ The first four terms of this A.P. will be −2, −2, −2 and −2.
(iii) a = 4, d = −3
Let the series be \(a_1 , a_2 , a_3 , a_4\) …
\(a_1 = a\) = 4
\(a_2 = a_1\) + d = 4 − 3 = 1
\(a_3 = a_2\) + d = 1 − 3 = −2
\(a_4 = a_3\) + d = − 2 − 3 = −5
Therefore, the series will be 4, 1, −2 −5 …
⇒ The first four terms of this A.P. will be 4, 1, −2 and −5.
(iv) a = −1, d = \(\frac{1}{2}\)
Let the series be \(a_1 , a_2 , a_3 , a_4\) …
\(a_1 = a\) = -1
\(a_2 = a_1\) + d = \(-1 + \frac{1}{2} = \frac{-1}{2}\)
\(a_3 = a_2\) + d = \(\frac{-1}{2} + \frac{1}{2}\) = 0
\(a_4 = a_3+d\) = \(0 + \frac{1}{2} = \frac{1}{2}\)
Clearly, the series will be \(-1 , \frac{-1}{2},0 \text{ and } \frac {1}{2}\)
⇒ The first four terms of this A.P. will be \(-1 , \frac{-1}{2},0\text{ and} \space \frac {1}{2}\)
(v) a = −1.25, d = −0.25
Let the series be \(a_1, a_2, a_3, a_4\)…
\(a_1 = a\)= −1.25
\(a_2 = a_1\) + d = − 1.25 − 0.25 = −1.50
\(a_3 = a_2\) + d = − 1.50 − 0.25 = −1.75
\(a_4 = a_3\) + d = − 1.75 − 0.25 = −2.00
Clearly, the series will be 1.25, −1.50, −1.75, −2.00 ……..
⇒ The first four terms of this A.P. will be −1.25, −1.50, −1.75 and −2.00.
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.