The sum of the first \( n \) terms of an arithmetic progression is:
\[
S_n = \frac{n}{2} [2a + (n-1)d]
\]
Given \( n = 10 \), \( S_{10} = 145 \), \( a = 1 \):
\[
145 = \frac{10}{2} [2 \cdot 1 + (10-1)d] = 5 [2 + 9d]
\]
\[
145 = 10 + 45d
\]
\[
45d = 135 \implies d = \frac{135}{45} = 3
\]
Thus, the common difference is:
\[
\boxed{3}
\]