For electrons to be ejected from a metal surface (photoelectric effect), the energy of the incident photons ($E_{photon}$) must be greater than or equal to the work function ($W_o$) of the metal.
$E_{photon} \ge W_o$.
If $E_{photon}<W_o$, electrons are not ejected.
First, calculate the energy of the incident photons.
The energy of a photon is given by $E_{photon} = hf = \frac{hc}{\lambda}$,
where $h$ is Planck's constant, $c$ is the speed of light, and $\lambda$ is the wavelength of the radiation.
Given values:
Wavelength $\lambda = 400 \text{ nm} = 400 \times 10^{-9} \text{ m} = 4 \times 10^{-7} \text{ m}$.
Planck's constant $h = 6.62 \times 10^{-34} \text{ Js}$. (The image shows $6.62 \times 10^{-34}$ Js, typically $6.626 \times 10^{-34}$ Js is used).
Speed of light $c \approx 3 \times 10^8 \text{ m/s}$.
Calculate $E_{photon}$ in Joules:
$E_{photon} = \frac{(6.62 \times 10^{-34} \text{ Js}) \times (3 \times 10^8 \text{ m/s})}{4 \times 10^{-7} \text{ m}}$.
$E_{photon} = \frac{6.62 \times 3}{4} \times \frac{10^{-34} \times 10^8}{10^{-7}} \text{ J}$.
$\frac{6.62 \times 3}{4} = \frac{19.86}{4} = 4.965$.
$\frac{10^{-26}}{10^{-7}} = 10^{-26 - (-7)} = 10^{-26 + 7} = 10^{-19}$.
So, $E_{photon} = 4.965 \times 10^{-19} \text{ J}$.
Convert $E_{photon}$ to electron-volts (eV), since work functions are given in eV.
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$. (Using $1.6 \times 10^{-19}$ J for simplicity if not specified).
$E_{photon} (\text{in eV}) = \frac{4.965 \times 10^{-19} \text{ J}}{1.602 \times 10^{-19} \text{ J/eV}}$. (Using $1.602$ for better precision).
$E_{photon} (\text{in eV}) \approx \frac{4.965}{1.602} \approx 3.10 \text{ eV}$.
A common shortcut for photon energy in eV when wavelength is in nm is $E(eV) \approx \frac{1240}{\lambda(nm)}$ or $\frac{1242}{\lambda(nm)}$.
Using $\lambda = 400 \text{ nm}$:
$E_{photon} \approx \frac{1240 \text{ eV nm}}{400 \text{ nm}} = \frac{124}{40} = \frac{31}{10} = 3.1 \text{ eV}$.
Or using $hc = (6.626 \times 10^{-34}) \times (2.998 \times 10^8) \approx 1.986 \times 10^{-25} \text{ Jm}$.
$1.986 \times 10^{-25} \text{ Jm} / (1.602 \times 10^{-19} \text{ J/eV}) \approx 1239.8 \text{ eV nm}$. So 1240 is good.
$E_{photon} \approx 3.10 \text{ eV}$.
Now compare $E_{photon} \approx 3.10 \text{ eV}$ with the work functions ($W_o$) of the metals:
\begin{itemize}
\item Li: $W_o = 2.42 \text{ eV}$. Since $3.10>2.42$, electrons are ejected.
\item Mg: $W_o = 3.7 \text{ eV}$. Since $3.10<3.7$, electrons are NOT ejected.
\item Cu: $W_o = 4.8 \text{ eV}$. Since $3.10<4.8$, electrons are NOT ejected.
\item Ag: $W_o = 4.3 \text{ eV}$. Since $3.10<4.3$, electrons are NOT ejected.
\item K: $W_o = 2.25 \text{ eV}$. Since $3.10>2.25$, electrons are ejected.
\item Na: $W_o = 2.3 \text{ eV}$. Since $3.10>2.3$, electrons are ejected.
\end{itemize}
The metals that do NOT eject electrons are Mg, Cu, and Ag.
There are 3 such metals.
This matches option (c).
\[ \boxed{3} \]