Relativistic total energy is:
\[
E = \gamma mc^2
\]
Given that the kinetic energy is equal to the rest mass energy:
\[
KE = (\gamma - 1) mc^2 = mc^2
\]
\[
\gamma - 1 = 1 \Rightarrow \gamma = 2
\]
Since \( \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \), solving for \( v \):
\[
\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 2
\]
\[
1 - \frac{v^2}{c^2} = \frac{1}{4}
\]
\[
\frac{v^2}{c^2} = \frac{3}{4}
\]
\[
v = \frac{\sqrt{3}}{2} c
\]