Time dilation in special relativity is given by:
\[
\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}
\]
Given \( \Delta t' = 100 \) sec and \( \Delta t = 80 \) sec:
\[
100 = \frac{80}{\sqrt{1 - \frac{v^2}{c^2}}}
\]
Solving for \( v \):
\[
\sqrt{1 - \frac{v^2}{c^2}} = \frac{4}{5}
\]
\[
1 - \frac{v^2}{c^2} = \frac{16}{25}
\]
\[
\frac{v^2}{c^2} = \frac{9}{25}
\]
\[
v = 0.6 c = 1.8 \times 10^8 \text{ m/sec}
\]
Thus, the correct answer is:
\[
Option 2: 1.8 \times 10^8 \text{ m/sec}.
\]